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FUNCTIONS

C H A P T E R

2.1 DEFINITION OF
CONTINUITY

Earlier we came across continuous functions and
widely used their properties when constructing the
graphs of simple functions, though the term
“continuous function” was not used that time since
the definition of this notion was not given then.
In the first stage the graphs of functions, say,
y = ax + b, y = ax2 or y = ax3 were plotted point by point. The
procedure was as follows: we first tabulated the values of
a given function for certain values of the argument and
then we constructed the points whose coordinates were
put down in the table and then joined the plotted points
with a “continuous curve”. Thus, we obtained the graph
of the given functions. We did not notice then that the
graph of such functions were continuous.
The geometrical concept of continuity for a function
which possesses a graph is that the function is
continuous if its graph is an unbroken curve. A point
at which there is a sudden break in the curve is thus a
point of discontinuity.
The notion of continuity is a direct consequence of
the concept of limit. The special class of functions
known as continuous functions possesses many
important properties which will be investigated in this
chapter.

Continuity at a point
The question for our consideration is as follows: given
any function f(x) defined in the neighbourhood of a, is
the function f(x) continuous or not at x = a?
The graph of y = f(x) is said to be continuous at
x = a if it can be traced with a continuous motion –
without any jump – of the pen from left to right at
x = a.
Definition A function f is continuous at x = a if the
following three conditions are met:

(i) f(x) is defined at x = a.

(ii) x a
lim


f(x) exists.

(iii) x a
lim
 f(x) = f(a).

In other words, function f(x) is  said  to be  continuous
at  x = a ,  if  x a

lim
 f(x) = f(a).

In terms of one-sided limits, f(x) is continuous at
 x = a if L.H.L. =  f(a) = R.H.L.

i.e. 
x a
lim


 f(x)  f(a)

x a
lim


 f (x)

i.e. h 0
lim
  f(a – h) = f(a) = h 0

lim
  f(a + h).

There is another way to discuss about continuity. Let
there be a function y = f(x), x  (a, b), and let x0  be a
certain value of the argument from the interval (a, b).
Then, if x  (a, b) is another value of the argument, the
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difference x – x0 is called the increment of the argument
and is denoted by x, and the difference

f(x) – f(x0) = f(x0 + x) – f(x0)
is termed as the increment of the function f at the point
x0 and is denoted  as f or y.
If the function f is continuous at the point x0, then, by
definition, )x(f)x(flim 0

xx 0




  and

consequently, )x(f)x(flim 0
xx 0




 = 0,

which means flim
x


 0

= 0.

It follows from the last relation that if f(x) is continuous
at the point x0, then to a small increment of the argument
there corresponds a small increment of the function or,
the increment of the function f is an infinitely small
quantity as x  0.

Formally, the function f(x) is continuous when x = a, if
given , a number  can be found, such that, whenever
| x – a | , we have | f(x) – f(a) | < .

Points of Discontinuity
If a function f(x) is continuous at a point x = a, then the
point a is called the point of  continuity of the function
f(x). Otherwise, when the limit of the function f(x) at the
point a does not exist, or exists but is not equal to f(a),
the function is said to be discontinuous at the point x
= a, the latter being called the point of discontinuity of
the function f(x).
In particular, if f(x) is defined for all points of the interval
(a – , a +) except for the point a, then x = a is also a
point of discontinuity of the function f(x) in the interval.
It follows from the aforegoing that a function is
discontinuous at a given point if either (i) the given
point fails to be in the domain of the function, or (ii) the
function fails to be have a limit at the given point, or
(iii) the limit of the function is unequal to the function's
value at the given point.

(i)

(ii)

 (iii)

(iv)

(v)

(vi)

The function shown in figures (i) to (v) are
discontinuous at x = a while that in (vi) is continuous
at x = a. Thus, a function f can be discontinuous due to
any of the following three reasons:
(i) x a

lim


 f(x) does not exist

i.e. 
x a
lim


 f(x)  

x a
lim


 f (x)     [figures (i) and (iv)]

(ii) f (x) is not defined at x = c     [figures (ii) and (v)]

(iii) x a
lim
  f(x)  f (c)  [figure (iii)]

Geometrically, the graph of the function will exhibit a
break at x= c .
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 It should be noted that continuity of a
function is the property of interval and is meaningful
at x = a only if the function has a graph in the immediate
neighbourhood of x = a.
For example, the discussion of continuity of

f(x) = 
1x

1


 at x = 1 is meaningful, but continuity of

f(x) = ln x at x = –2 is meaningless.
Similarly, if f(x) has a graph as shown in the figure
below, then continuity at x = 0 is meaningless since we
can’t approach 0 from either side of the point. Such a
point is called an isolated point.

–1 10

Y

X

Consider the following examples:

(i) The function f(x) = 2)x1(

1

  is discontinuous at

x = 1. This function is not defined at the point x = 1.

(ii) The function f(x) = 
|x|

xsin
 has a discontinuity at

x = 0, since f(0+) = 
x 0

sin xlim 1
x


  and

f(0–) = 
x 0

sin xlim 1
x

 


.

(iii) Let 

2 2x a
when 0 x a,

x a
f(x) a when x a,

2a when x a.

 
   

 



Here ,a)x(flim
_ax

2


f(a) = a, ,a)x(flim
ax

2


and there is a discontinuity at x = a due to the isolated
point P.
To understand explicitly the reasons of discontinuity,
consider the graph of the following function y = f(x).

Let us comment on the continuity of the function.
(i) f is continuous at x = 0  and x = 4
(ii) f is discontinuous at x = 1 as limit does not exist
(iii) f is discontinuous at x = 2 as f (2) is not defined

although the limit exists.
(iv) f is discontinuous at x = 3 as 

x 3
lim
  f (x)   f(3)

(v) f is discontinuous at x = 5 as neither the limit exist
nor f is defined at x = 5.

Discuss the continuity of the

function [cos x] at x = 
2


, where [  ] denotes the
greatest integer function.

L.H.L =   0xcoslim
2

x






.

R.H.L =   1xcoslim
2

x






.

f 





 

2 = 



 

2
cos  = 0.

Since, L.H.L R.H.L the limit does not exist.

So, the function is discontinuous at x = 
2


.

Test the continuity of the function f(x)

at x = 0, where x/1

x/1

e1

e
)x(f


 , when x 0 and f(0) = 0.

Given, f(0) = 0

L.H.L.  = 0
01

0
1 1

1

00








  x/

x/

xx e

e
lim)x(flim

since 







 x
lim

x

1
0

R.H.L.=  x/

x/

xx e

e
lim)x(flim 1

1

00 1 


 

1
10

1

11
1

1
0








x/

x

e

lim
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since  







 x
lim

x

1
0

Since x 0 x 0
lim f(x) lim f(x)

  
 ,

f(x) is discontinuous at x = 0.

Find whether f(x) is continuous or

not at x = 1, if f(x) = 
xsin , x 1
2

[x] , x 1

 

 

,

where [  ] denotes the greatest integer function.
For continuity at x = 1, we determine,

f(1), –x 1
lim


 f(x) and 
x 1
lim


 f(x).

Now,  f(1) = [1] = 1.

–x 1
lim


 f(x) = –x 1
lim


 sin 
x

2


 = sin 

2


 = 1.

and
x 1
lim


 f(x) = 

x 1
lim


 [x] = 1.

So f(1) = –x 1
lim


 f(x) = 
x 1
lim


 f(x).

 f(x) is continuous at x = 1.

One-sided Continuity

A function f defined in some neighbourhood of a point
a for x  a is said to be continuous at a from the left if

x a
lim


 f(x) = f(a).

A function f defined in some neighbourhood of a point
a for x  a is said to be continuous at a from the right if

x a
lim


 f(x) = f(a).

One-sided continuity is a collective term for functions
continuous from the left or from the right.
If the function f is continuous at a, then it is continuous
at a from the left and from the right . Conversely, if the
function f is continuous at a from the left and from the
right, then x a

lim
  f(x) exists, and x a

lim
  f(x) = f(a).

The function y = sgn x is neither left continuous nor
right continuous at x = 0.
The function y = sin–1 x is left continuous at x = 1. We
cannot discuss the right continuity here as the function
is not defined in the right neighbourhood of x = 1.
The function y = {x} is right continuous at x = 0 but left
discontinuous there.

At each integer n, the function f(x) = [x] is continuous
from the right but discontinuous from the left because

)n(fn]x[lim)x(flim
nxnx


 

but )n(f1–n]x[lim)x(flim
–– nxnx




.

Let f(x) = 







2xif1x

2xifx2

Show that f is continuous from the left at 2, but not
from the right.

 f (2)  = 2 + 1 = 3

x 2
lim


 f(x) = 

x 2
lim


(x + 1) = 3 and

x 2
lim


 f(x) = 

x 2
lim


x2  = 4

Since 
x 2
lim


 f(x) = f(2), f is continuous from the left at 2

and 
x 2
lim


 f(x)  f(2), f is not continuous from the right at 2.

Continuity at End Points
Let a function y = f(x) be defined on [a, b].
Then the function f(x) is said to be continuous at the

left end point x = a if, f(a) = ax
lim  f(x),

and f(x) is said to be continuous at the right end point

x = b if, f(b) = bx
lim  f(x).

For example, consider the function f(x) = {x}, 0  x  1. It is
continuous at x = 0 and discontinuous at x = 1.

Discuss the continuity of

f(x) = 
x a

b x




 where a < b, at x = a and x = b.

We notice that the domain of the
function is (a, b). At the left end point x = a, we have

ax
lim f(x) = 0 = f(a). Hence f is continuous at x = a.

At the right end point x = b, f(b) is undefined and

x b
lim


f(x) = . Hence f is discontinuous at x = b.

Continuous Extension  to a Point
A function may have a limit at a point where it is
undefined. Then we can extend the definition of the
function at that point to make it continuous there.
Suppose f(a) is not defined, but 

x a
lim


 f(x)  = L exists. If
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the point a is added to the domain of definition of the
function f(x) and if at that new point the value of the
function is put equal to the common value of the left
hand and right hand limits, the (new) function F(x)
thus obtained, is continuous at the point a. Then, we
can define the new function F(x) by the formula

f (x) if x is in the domain of f
F(x)

L if x a


  
The function F is continuous at x = a. It is called the
continuous extension of f to x = a.

For example, the function y = 
x

xsin  is not defined at

the point x = 0. But since 
x

xsinlim
0x

 = 1 we can

introduce a new function, defined for all the values of
x and coinciding with the old one for x  0, which is
everywhere continuous:

F(x) = 










0xfor1

0xfor
x

xsin
 .

Let f(x) = 
ln(1 ax) ln(1 bx)

x
  

 .

Find the value which should be assigned to f at x = 0,
so that it is continuous at x = 0.

0x
lim


 f(x)

= 0x
lim


ln (1 ax) ln (1 bx)a b
ax ( bx)

           
=  a. 1 + b. 1 = a + b .





 




1
x

)x1(loglim
0x



So, f(0) = a + b, if f is continuous at x = 0.
A function y = f (x) is defined as

f(x) = 

(x 3)k sin for x 2
6

3 11 x for x 2
x 2

  


   
If f (x) is continuous at x = 2, then find the value of  k.

Since f (x) is continuous at x = 2

x 2
lim


 f(x) = f (2)  
x 2
lim


f(x) = 2
k

.

Now, f (2–) = k sin 





 

6
5

=
2
k

and

f (2+) = 
x 2

3 11 x
lim

x 2

 


=  x 2

(x 2)
lim

(x 2) 3 11 x


    = 6

1
.

 2
k

 = 6
1

 k = 3
1

.

Let f(x) = 2

11
x

x)xln( x  

, then find

the value of f(0) so that the function f is continuous at
x = 0.

x 0
limf (x)


= 2x 0

(1 x)ln(1 x) x
lim

x

  
 






 form

0

0

= 
x

)xln(
lim
x 2

111
0




    (by L’Hospital’s Rule)

= 
2
11

2
1

0



 x

)xln(
lim
x

.

For continuity, we must have f(0) = 
x 0
lim f (x)


.

Hence, f(0) = 
1
2

.

Examine the continuity of the function

f(x) = 















1x,
2

1

1x,
1|1x|2x

1x
2

2

 , at x = 1.

L.H.L = f(1+) = 
1|1x|2x

1x
lim

2

2

1x 




= 
1)1x(2x

1x
lim

2

2

1x 




= 2)1x(

)1x(
lim

1x 



 = 

There is no need to find the R.H.L. at x = 1 since L.H.L.
is non-existent.
Thus, f(x) is discontinuous at x = 1.

Check the continuity of the

function f(x) = 







0x,0

0x),x/1sin(x
at x = 0 .

Consider the limit 
0x

lim
 xsin 








x
1
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If x > 0, – x  x sin (1/x)  x,
and if x < 0, x  x sin (1/x)  – x.
Thus, for x  0, – |x|  x sin (1/x)  |x|.
Since both |x|  0 and – |x|  0 as x  0, the Sandwich
theorem applies and we can conclude that x sin (1/x)
 0 as x  0. This is illustrated in the following figure.

Y y = |x|

y = –|x|

y = x sin 1
x—

X

It follows that the function is continuous at x = 0, since
the value of the function and the value of the limit are
the same at 0. This shows that the behaviour of a
function can be very complex in the vincinity of x = a,
even though the function is continuous at a.

Test the continuity of f(x) at x = 0 if

f(x) = 

1 12
|x| x(x 1) , x 0

0 , x 0

 
  
 


  
 

.

L.H.L. = -®x 0
lim  f(x) = 

h 0
lim
  f(0 – h)

=  
h 0
lim
  

1 1
2

|0 h| (0 h)(0 h 1)
      

= 
1 1

2
|0 h| (0 h)

h 0
lim(0 h 1)

     


 

= 
h 0
lim
  (1 – h)2 = (1 – 0)2 = 1.

R.H.L = 
x 0
lim
   f(x) = 

h 0
lim
  f(0 + h)

= 
1 1

2
|h| h

h 0
lim (h 1)

  
 




= 
2

2
h

h 0
lim (h 1)






= (1 + 0)2 –  = 1 –  = 1.
f(0) = 0.

 L.H.L. = R.H.L.  f(0)
Hence, f(x) is discontinuous at x = 0.

Discuss the continuity of the function

f(x) = 

2[x] {x}

e

a 1
, x 0

2[x] {x}

log a , x 0

 



 

   (a  1)

at x = 0, where [x] and {x} are the greatest integer part
and fractional part of x respectively.

f(0) = loge a

L.H.L. = 
x 0
lim
   f(x) = 

h 0
lim
  f(0 – h)

= 
2[0 h] {0 h}

h 0

a 1
lim

2[0 h] {0 h}

  




  

= 
2[0 h] { 1 (1 h)}

h 0

a 1
lim

2[0 h] { 1 (1 h)}

    




    

= 
2 (1 h]) 1

h 0

a 1 a 1 1
lim 1

2(1 h) 1 a

   



 
  

   .

R.H.L. = 
x 0
lim
   f(x) =  

h 0
lim
  f(0 + h)

= 
2[ )] {0 h} 1

h 0

a
lim

2[0 h] {0 h}

   

   

= 
0 h

h 0

a 1
lim

0 h








= 
h

h 0

a 1
lim

h


 = loge a

We find that 1 – 1/a = logea only when a = 1, which is
not acceptable. Since L.H.L.  R.H.L. = f(0),  f(x) is
discontinuous at x = 0.

If the function

f(x)= )0x(
xsinxtan

)xsin(sin)xtan(tan



  is continuous

at x = 0, then find the value of f (0).

f (0) = 
x 0

tan(tan x) sin(sin x)
lim

tan x sin x




= x 0 3
2

tan(tan x) sin(sin x)
lim

tan x 1 cosx
x

x x




 

 
 

= 3x 0

tan(tan x) sin(sin x)
2 lim

x



=
3

5
3x 0

1 tan x 2
2 lim tan x tan x ......

3 15x

 
   

 
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3 5sin x sin x
sin x .........

3! 5!
 

    
 

=

3 3

3 3x 0

tan x sin x
3 3!tan x sin x2lim ....

x x

  
  

        
 
 

= 2x 0

tan x 1 cosx 1 1
2lim

x 3 6x

       
    

= 2 
1 1

2 2
     = 2.

Let f(x) = 
1xcot

1xcos2



x   





 

2
,0  except at x = 




. Define f
 

    so that

f(x) may be continuous at x = 



.

f(x) will be continuous at x = 



,  if

x / 4
lim f(x) f


    

 f
 

    = 
x / 4

2 cosx 1
lim

cot x 1




= 
x /4

( 2 cosx 1)sin x
lim

cosx sin x




= 
x /4
lim
  

( 2 cosx 1)( 2 cosx 1)(cosx sin x) sin x

( 2 cosx 1)(cosx sin x) (cosx sin x)

  
  

= 
   

 1xcos2
xsinxsinxcos

)xsinx(cos
1xcos2lim 22

2

4/x 







 = 
 

1xcos2
xsinxcosxsinlim

4/x 




= 
2
1

1
2

1.2

2
1

2
1

2
1














.

Let

 f(x) = 
xxtan

x)xtanx(secnee xxtan


 l

 be a

continuous function at x = 0. Find the value of  f (0).

For continuity of f  at  x = 0, we have

f (0) = 
x 0
lim f(x)


= 
tan x x

x 0 x 0 3
3

e e ln(secx tan x) x
lim lim

tan x xtan x x x
x

 

  


  
 
 

= 
x tan x x

3x 0 x 0

e (e 1) ln(secx tan x) x
lim 3lim

tan x x x



 

  




 = 1 + 2x 0

sec x 1
3lim

3x


     (by L’Hospital’s Rule)

= 1 + 2
1

 = 2
3

.

Let a function f (x) be defined in the
neighborhood of as

f (x)  = 

2

sin 2x

ln(2 cos2x) for x 0
ln (1 sin3x)

e 1 for x 0
ln(1 tan9x)






   

Find whether it is possible to define  f (0)  so that  f
may be continuous at x = 0.

h 0
lim
 f (0 + h)

= 
sin 2h

h 0

e 1 sin2h.(2h)
lim

ln(1 tan9h) sin 2h.(2h)




= 
sin 2h

h 0 h 0 h 0

e 1 sin 2h 2h
lim . lim lim

sin 2h 2h ln(1 tan9h)  




= 1.1.
h 0

2h
lim

tan9h ln(1 tan9h)cot 9h 

= 
h 0

2h 2
lim

tan9h 9
 . h 0

lim
 f (0 – h)

= 
2 2

2 2h 0 h 0

ln(1 2sin h) 2sin h
lim . lim

2sin h ln (1 sin3h) 




= 
2 2

2 2h 0 h 0

2sin h h
lim . lim

h ln (1 sin3h)  

= 2h 0

1
lim ln(2 cos2h)

9h

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= 
21/h

h 0

1
lim ln(2 cos2h)

9 


= 
2 2

3 2h 0

2·h ( sin3h)
lim

sin 3h·ln (1 sin3h)


  = 9

2

Since  f (0+) = f(0–) = 
9
2

the limit exists.

Therefore, it is possible to define f(0) such that f is
continuous at x = 0.

 f (0)  = 
9
2

.

Determine the value of p, so that

the function  

2

4

x

2

x 2cos x 2 for x 0
x

f (x) p for x 0

sin x n(e cos x) for x 0
6x

  


 
  


l

is continuous at x = 0.

h 0
lim f(0 h)


 = 
®

- -2

4h 0

h 2(1 cos h)
lim

h

= 

2 2

4h 0

h
h 4sin

2lim
h



=   3h 0 h 0

h h
h 2sin h 2sin

2 2lim .lim
h h 

 

= 3t 0

2t 2sin t
2·lim

8t


where h = 2t

= 3t 0

t sin t 1
lim

122t


 .

h

2h 0 h 0

sin h ln(e cosh)
lim f(0 h) lim

6h 


 

= 2h 0

sin h h ln cosh
lim

6h

 

= 
2h

1

2 )h(cosn
6
1

h6
hhsin

l


= 3h 0

sin h h
lim ·h

h


 +   2

1

h
h 0

1
lim ln cosh

6


= 0 
 1hcos

h
1Lim 20hen

6
1 

 l  = 
1

12

Hence, 
h 0 h 0
lim f(0 h) lim f(0 h)
 

   = f(0) = 
1

12
 = p.

If f(x) = 3x
xcosBxsinAx2sin 

is continuous at x = 0, find the values of A and B. Also
find f(0).

As f(x) is continuous at x = 0,

f(0) = 30x x
xcosBxsinAx2sinlim 


.

As denominator 0, when x   0, numerator should
also approach  0, which is possible only if
sin 2(0) + A sin (0) + B cos(0) = 0     B = 0

 f(0) = 0x
lim
 3x

xsinAx2sin 

= 0x
lim








 








2x
Axcos2

x
xsin

= 0x
lim








 

2x
Axcos2

Again we can see that denominator  0 as x   0.
 Numerator should also approach 0 as x   0
 2 + A = 0      A = – 2.

 f(0) = 0x
lim
  









 







 

 2

2

0x2 x
2/xsin4lim

x
2xcos2

= 
2

2x 0

sin x / 2lim 1
x / 4

 
  

 
So, we get  A = – 2, B = 0 and f(0) = – 1.

Let

f(x) = 






























 







0x,
x

dxcx
1

0x,3

0x,
x

5xcosb)xsinx1(a

x/1

2

3

2

If f is continuous at x = 0, then find the values of a, b,
c and d.

f(0) = 3

R.H.L. = 0x
lim f(x) = 

0h
lim
  f(0 + h) = 

0h
lim
  f(h)

= 
h/1

2

3

0h h

dhch
1lim
















 



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Since f is continuous at x = 0, R.H.L. exists.
For existence of R.H.L., c must be 0.

 R.H.L. = 
0h

lim
  {1 + dh)1/h (form 1)

= 
)dh(lim

he
11

0


  = ed

L.H.L. = 0x
lim f(x) = 

0x
lim
 f(0 – h)

= 20h )h(

5)hcos(b))hsin()h(1(a
lim






= 2h 0

a(1– hsinh) + bcosh + 5lim
h®

For finite value of L.H.L. the numerator must tend to 0 as
h  0.
 a + b + 5 = 0.

L.H.L. = 2h 0

a – ahsin h– (5 + a)cos h + 5lim
h®

= 2h 0

(5 + a)(1– cos h)– a hsin hlim
h®

= 2 2h 0

(a + 5)(1– cos h)(1+ cos h) a hsin hlim –
h (1+ cosh) h®

ì üï ï
í ý
ï ïî þ

= 
2

2h 0

(a + 5)sin h asin hlim –
h (1+ cosh) h®

ì üï ï
í ý
ï ïî þ

= 
11

)1)(5a( 2




 – a . 1

= 
2

5a 
 – a = 






 

2

a5
.

Now, f(x) is continuous at x = 0.
 L.H.L. = R.H.L. = f(0)

2

a5
 = ed = 3

 a = 1, d = ln 3, c = 0, b = –6.

Let   f (x)

= 
2 2

1 a cos2x bcos4x if x 0
x sin x

c if x 0

  

 

,

be continuous at x = 0, then find the values of  a, b and c.

4x 0

1 a cos2x bcos4x
lim

x

 

As  x  0,  Denominator  0 and
Numerator  1 + a + b

For existence of limit, a + b + 1 = 0 ...(1)

 c = 4x 0

a cos2x bcos4x (a b)
lim

x

  
...(2)

= – 
2 2

2x 0

a(1 cos2x) b(1 cos 4x)
x xlim

x

 


The limit of numerator = 4a
1

2
 
 
   + 16b

1

2
 
 
 

 2a + 8b = 0  a = – 4b ...(3)
From (1) and (2) – 4b + b = – 1

 b = 
1

3
and a = – 

4

3

From (2), c = 2x 0

4(1 cos2x) (1 cos4x)
lim

3x

  

= x 0
lim


2 2

4

8sin x 2sin 2x

3x



= x 0
lim


2 2 2

4

8sin x 8sin xcos x

3x



= x 0
lim


8

3
 · 

2

2

sin x

x
 · 

2

2

sin x

x
 = 

8

3
.

Discuss the continuity of the

function, f(x) = n

n

n x

xsinx)xln(
lim 2

2

1
2





 at x = 1.

We have f(1) = (ln3 – sin1)/2

and 








 1xif,

1xif,0
xlim

2

2
n2

n

 For x2 < 1, we have

f(x) = n

n

n x

xsinx)xln(
lim 2

2

1
2





  – ln (2 + x)

Again for x2 > 1, we have

f(x) =  

n

n

n

x

xsin)xln(
xlim

2

2

11

21






  – sin(x)

Here, as x  1

1x
lim  f(x) = ln3 and 1x

lim f(x) = – sin1

So, 1x
lim f(x)  1x

lim  f(x).
Therefore, f(x) is discontinuous at x = 1.
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Find the value of f(1) if the function

f(x) = ,
)1x(

mx)1m(x
lim

2

1m

n 



 x  1

is continuous at x = 1.
We have

,
)1x(

)1x(m)1x(x
lim)x(flim

2

m

0x0x 





= 2

1m2

0x )1x(

)1x(m)x....xx1)(1x(x
lim


 



= 
1x

)timesm...11()x....xxx(
lim

m32

0x 




= 
1x

)1x(.....)1x()1x()1x(
lim

m32

0x 




= 



















 1x

1x
.....

1x

1x

1x

1x
1lim

m32

0x

= 1 + 2 + 3 + .... + m = 
2

)1m(m 

Hence, for f to be continuous at x = 1, we should have

f(1) = 
2

)1m(m 
.

A function f(x) satisfies f(x + y)
= f(x) . f(y) for all x and y R. Show that the function is
continuous for all values of x if it is continuous at x = 1.

We have f(x + y) = f(x) . f(y) ...(1)
Putting x = 0, y = 0 in (1)
we have f(0) =  f(0). f(0)  f(0) = 0 or 1.
If f(0) = 0 then putting y = 0 in (1)
we get f(x) = f(x) . f(0)
 f(x) = 0 for all x.

Hence f is continuous for all x. Here the continuity of f
at x = 1 is not required as a condition.
If f(0) = 1 then we have the following:
Putting x = 1, y = –1 in (1)
we have f(0) =  f(1). f(–1)  f(1). f(–1) = 1
Hence f(1) is non-zero. ...(2)
As the function is continuous at x = 1,
we have  

0h
lim
 f(1 + h) = f(1)

(using f(x + y) = f(x) . f(y))


0h
lim
  f(1) . f(h) = f(1)


0h

lim
  f(h) = 1 using (2) ...(3)

Now, we consider any arbitrary point x.

0h
lim
  f(x + h) = 

0h
lim


 f(x) . f(h)

= f(x) 
0h

lim
  f(h)

= f(x) using (3)
Hence, at any arbitrary point x, limit = function's value.
Therefore, the function is continuous for all values of x.

Let f be a function satisfying

f(x + y) + )y(f6  = f(x)f(y) and 0x
lim f(x)  6.

Discuss the continuity of f.

0h
lim
 f(x + h)=  )h(f6)h(f)x(flim

0h




= )h(f6lim)h(flim)x(f
0h0h




= f(x).6 – 0 = 6f(x)  f(x)
Putting x = 0, y = 0 in the given relation, we get

f(0) + )0(f6   = f2(0).  f(0)  0
 f(x) = 0 for all x is not possible.

Thus, 
0h

lim
  f(x + h)  f(x).

Hence, f is discontinuous at all x.

AAAAA
1. Check the continuity of

f(t) = 










0tsin,1

0tsin,
tsin

)ttan(sin
 at t = 0.

2. If f (x) =












3x,5x3
3x,4
3x,x

 is continuous at x = 3

then find the value of 

3. If f(x) = )x2sin(
4x2 

, x 0 is continuous function

at x = 0, then find the value of f(0).

4. If the function f(x) = 

2x (a 2)x 2a , x 2
x 2

2 , x 2

   



 

is continuous at x = 2 then find the value of a.
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5. If f and g are continuous functions with f(3) = 5

and 3x
lim
 [2f(x) – g(x)] = 4, find g(3).

6. Use continuity to evaluate the limits :

(i)
x 4

5 xlim
5 x




(ii)
2

1
2x 1

x 4lim tan
3x 6x





 
 

 
7. For the function (x) = x.lnsin2x when x > 0, and

(0) = 0, discuss the right continuity at x = 0.
8. The function f(x) = (x + 1)cotx is undefined at x  = 0.

Find the value which should be assigned to f at  x
= 0, so that it is continuous at x = 0.

          AAAAA
9. If possible find value of  for which f(x) is

continuous at x = 
2


.

f(x) = 
1 sin x

1 cos2x




 , x
2




=   x
2




= 
2x

4 2x 2

 

   
, x

2




10. Find the value of f(0) so that the function

f(x) = 
31 x 1 x

x
  

 is continuous at x = 0.

11. Show that the function f defined on R by setting

f(x) = | x |m sin
x

1
, when x  0,  f(0) = 0, is continuous

at x = 0 whenever m > 0.

12. The function f(x) = 1–xsin
x

1
 is meaningless for

x = 0. How should one choose the value f(0) so
that f(x) is continuous for x = 0?

13. Find the values of a and b such that the function

f(x) = x + a 2  sin x, 0 x
4


 

= 2x cot x + b, x
4 2

 
 

= a cos 2x – b sin x, x
2


  

is continuous at 
4


 and 

2


.

14. If f(x) = 
1
x(1 ax) x < 0

  = b x = 0

  = 

1

3(x c) 1

x

  x > 0

find the values of a, b, c, f(x) is continuous at x = 0.

15. If  f (x) = cos(x cos x
1

) and g (x) = 
xsinx

)x(secn 2l
 for

x  0 and they are both continuous at x = 0 then
show that f (0) = g (0) = 1.

16. The function f(x) = a [x + 1] + b [x –1], where [.] is
the greatest integer function then find the
condition for which f(x) is continuous at x = 1.

17. Let f (x)

 = 

a
|sin x|

tan 2x
tan3x

(1 | sin x |)    for x 0
6

b for x 0

e              for 0 x
6

 
    
 


  


Find ‘a’ and ‘b’ if f is continuous at x = 0.

18. If f(x) is continuous in [0, 1] and f 







2

1
 = 1 then

find 








 1n2

n
flim

n
.

19. Let f(x) = 
)1xlog(

)1esin( 2x




, x  2.

If f(x) is continuous at x = 2 find f(2).

2.2 CONTINUITY  IN  AN
INTERVAL

We can extend the concept of continuity and say that
a function f(x) is continuous in an interval if it is
continuous at every point in the interval.

Roughly speaking, a function is said to be continuous
on an interval if its graph has no breaks, jumps, or
holes in that interval. Continuity is important because,
as we shall see, function with this property have many
other desirable properties.
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Continuity in an open interval
A function f is said to be continuous in an open interval
(a , b) if f is continuous at each and every point lying in
the interval (a , b) .

Continuity in a closed interval
A function f is said to be continuous in a closed interval
[a, b] if :

(i) f is continuous in the open interval (a , b)
(ii) f is right continuous at ‘a’

i.e. 
x a
lim


 f(x) = f(a).

(iii) f is left continuous at ‘b’

i.e. 
x b
lim


 f(x) = f(b).

For instance, f(x) = 2x3x2  , where 1  x  2, is
a function continuous on this interval, since it is
continuous at every point of the interval (1, 2),
continuous on the right at the point x = 1, and
continuous on the left at the point x = 2.

The function y = 
2x1

1


 is continuous in the open

interval (–1, 1). It is discontinuous at the points x = – 1
and x = 1.
Similarly, f is continuous on the half-open interval
(a, b] if it is continuous at each number between a and
b and is continuous from the left at the endpoint b.
In the case where f is continuous on (–), we will
say that f is continuous everywhere. The general
procedure for showing that a function is continuous
everywhere is to show that it is continuous at an
arbitrary real number.

Continuity of elementary functions
All basic elementary functions are continuous in the
intervals where they are defined.
The constant function and the identity function are
continuous over R.
We know that y = sin x and  y = cos x are continuous
for every value of x.
From the graph we see that f(x) = sin x is continuous in

its entire domain. 0

y

xπ2
π3π- 2

We see that the functions

y = tan x = 
xcos

xsin
, y = cot x = 

xsin

xcos

y = sec x = 
xcos

1
, y = cosec x = 

xsin

1

are continuous for all those values of x for which they
are defined. The discontinuities of these four functions
arise only when the denominators become zero and
for such values of x, these functions themselves cease
to be defined.
f(x) = tan x is continuous at all points except

x = (2n + 1) 



, n  I.

Thus, the domain of continuity of each of the functions
sin x, cos x, tan x, cot x, sec x, and cosec x coincides
with the corresponding domain of definition.
f(x) = tan x is continuous at all points except x = (2n + 1)



, n  I.

 f is a continuous function if it is
continuous at each number a in its domain.
The examination of the graph of the function y =  1/x in
the vicinity of the point x = 0 clearly shows that it
"splits" into two separate curves at that point.
However, the function f(x) = 1/x, whose domain consists
of the intervals (–, 0) and (0, ) is continuous.
Although this function explodes at 0, this does not
prevent it from being a continuous function. The key
to being continuous is that the function is continuous
at each number in its domain. The number 0 is not in
the domain of f(x) = 1/x.
However, f(x)=1/x is discontinuous in the interval (–, )
Theorem Every elementary function is contin-uous
at every point in its domain.
The polynomial function f(x) = a0x

n + a1x
n – 1 + ..... +

an – 1
 x + an is continuous over R .

It follows from the preceding theorem and the fact that
constant function and the identity function are
continuous over R.
If f(x) is continuous for any particular value of x, then
any polynomial in f(x), such as
a0{f(x)}n + a1{f(x)}n – 1 + ..... + an – 1

 {f(x)} + an  is also
continuous
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The rational function f(x) =
n n 1

0 1 n
m m 1

0 1 m

a x a x ..... a

b x b x ..... b





  
  

is continuous at every value of x except at those points
where the denominator becomes zero.

For instance, the function f(x) = 
7x4

x3




 is continuous

throughout the entire number line except for the point

x = 
4

7
 , at which the denominator of the fraction

vanishes. And the function f(x) = 
1xx

1xx4x
2

23






is continuous everywhere on R, since the denominator
never vanishes.
Now, each of the irrational functions (x a)(b x), 

3 (x a)(b x)   and 3

xb

ax











 are continuous at

each point in their domain, since these functions are
elementary. All trigonometric  functions, exponential and
logarithmic functions are continuous in their domain.

Test the following functions for
continuity

(a) f(x) = 
5 2

4 3 2

2x 8x 11

x 4x 8x 8x 4

 
   

(b) f(x) = 
3 23sin x cos x 1

4cosx 2

 


(a) A function representing a ratio of two continuous
functions (polynomials in this case) is
discontinuous only at points for which the
denominator is zero.
But in this case (x4 + 4x3 + 8x2 + 8x + 4)
= (x2 + 2x + 2)2 = [(x + 1)2 + 1]2 > 0 (non-zero).
Hence f(x) is continuous everywhere.

(b) The function f(x) suffers discontinuities only at
points for which the denominator becomes zero
i.e. at the roots of the equation
4 cos x – 2 = 0 cos x = 1/2.
x = 2n ± /3, n I.

Thus the function f(x) is continuous for all real x, except
at the points 2n ± /3, n I.

Let f (x) = 
kx

1kxx
2

2




. Find all

possible values of k for which f is continuous for every
x  R.

f (x) = 
kx

1kxx
2

2




For f  to be continuous  x  R
x2 + kx + 1  0 and  x2 – k must not have any real root.
 k2 – 4  0 and k < 0
 k  [–2, 2]  and k < 0
From above, k  [–2, 0).

Where is the function F(x) = ln(1 + cos x)
continuous?

We know that f(x) = ln x is continuous
and g(x) = 1 + cos x is continuous (because both y = 1
and y = cos x are continuous). Therefore, F(x) = f(g(x)) is
continuous wherever it is defined.
Now ln(1 + cos x) is defined when 1 + cos x > 0. So it is
undefined when cos x = – 1, and this happens when
x = ± , ± 3, .... Thus, F has discontinuities when x is
an odd multiple of  and is continuous on the intervals
between these values.

Where is the function

f(x) = 
12

1




x

xtanxln –

 continuous?

We know that the function y = ln x is
continuous for x > 0 and y = tan–1x is continuous on R.
Thus, y = ln x + tan–1 x is continuous on (0, ). The
denominator, y = x2 – 1, is a polynomial, so it is
continuous everywhere. Therefore, f is continuous at
all positive numbers x except where x2 – 1 = 0. So f is
continuous on the intervals (0, 1) and (1, ).
We need to examine the continuity of non-elementary
functions carefully.
For instance, the greatest integer function f(x) = [x],  is
continuous everywhere except for the integral values of x.

y = [x]  is discontinuous at x  I.
Also, the fractional part function f(x) = {x},  is
continuous everywhere except for the integral values
of x.
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Hence, the continuity of functions {f(x)} and [f(x)]
should be checked at all points where f(x) becomes an
integer.

The function y = sgn x (or y = 
x

|x| ) is discontinuous
at the point x = 0.
Hence, the continuity of the function sgn (f(x)) should
be checked at the points where f(x) = 0. (Note that if
f(x) is constanly equal to 0 when x  a then x = a
may not be a point of discontinuity).
Usually there are only a few points in the domain of a
given function f where a discontinuity can occur.
To find the points of discontinuity, we collect all the
doubtful points and examine them for continuity.
We use the term suspicious point for a number a where
(i) The definition of the function changes or domain

of f splits, or
(ii) substitution of x = a causes division by 0 in the

function.
A function may be discontinuous at a suspicious point
which can be found using the test of continuity.

For example, y = 
4x

1x
2

2




 has two suspicious points

x = ± 2 (where the denominator becomes 0).

y = x sin
x

1
 has one suspicious point x = 0.

For the function y = |x2 – 4| we have
y = x2 – 4 when x2 – 4  0
and y = 4 – x2 when x2 – 4 < 0.

This means the definition of the function changes when
x2 – 4 = 0, i.e. x = ± 2. Thus, the function has two
suspicious points x = ± 2.

 There is no chance of continuity at
points where the function is not defined. We know
that the function cannot be continuous at such points.

If f(x) = [sin x],     0  x < 1

=  2 5
x sgn x

3 4
   
  , 1  x  2,

where { . } represents the fractional function then find
the suspicious points for continuity of function in the
interval [0, 2].

(i) Continuity should be checked at the end-points
of intervals of each definition i.e. x = 0, 1, 2.

(ii) For [sin x], continuity should be checked at all
values of x at which sin x    i.e. x = 0, 1/2

(iii) For  2 5
x sgn x

3 4
   
 

, continuity should be

checked when x  – 5/4 = 0  i.e. x = 5/4  and when
x – 2/3   i.e. x = 5/3.

Finally, continuity should be checked at the suspicious
points x = 0, 1/2, 1, 5/4, 5/3 and 2 .

Show that the function

f(x) = 











1x0,2x

0x2,1x

2x3,3x2

is discontinuous at x = 0 and continuous at other
points in the interval [–3, 1].

The graph of

f(x) = 











1x0,2x

0x2,1x

2x3,3x2

is plotted below :

3

2
1

O
–1

–2

–1 1

y = (x+1)

y = x+2

y = 2x+3

X

Y

–2–3

Here, we observe from the graph that at x = 0,

0x
lim f(x) = 1 and 0x

lim  f(x) = 2, which shows that the

function is discontinuous at x = 0 and continuous at
every other point in [–3, 1].

Let

f(x) = 

2sin x if x / 2

Asin x B if x / 2
2

cosx if x / 2

  
      


 

.

Find A and B so as to make the function continuous.
At x = –/2

L.H.L. = 
x

2

lim ( 2sin x)




 = 2

R.H.L. = 
x

2

lim




 A sin x + B = – A + B
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So   B – A = 2 ...(1)
At x = /2

L.H.L. = 
x

2

lim




 A sin x + B = A + B

R.H.L. = 
x

2

lim




 cos x = 0

So A + B = 0 ...(2)
Solving (1) and (2) we get A = – 1 and B = 1.

Find the intervals on which f and g

are continuous where f(x) = 






5x2if2x

2x5ifx3

and g(x) = 






5x2if2x

2x5ifx2
.

The domain for both function is [–5, 5).
Both functions are continuous except possibly at the
suspicious point x= 2. Examining f, we see

2x
lim  f(x) = 2x

lim (3 – x) = 1

and 2x
lim f(x) = 2x

lim (x – 2) = 0

so 
2x

lim
  f(x) does not exist and f is discontinuous at x = 2.

Thus, f is continuous for –5  x < 2 and for  2  x < 5.
For g, we have g(2) = 0

and 2x
lim  g(x) = 2x

lim (2 – x) = 0

and 2x
lim  g(x) = 2x

lim (x – 2) = 0.

Therefore, 
2x

lim
  g(x) = 0 = g(2), and g is continuous at

x = 2. Hence, g is continuous throughout the interval
[–5, 5).

Find the points of discontinuity of
the following functions for x  R.

(i) f(x) = 
1xsin2

1


(ii)  f(x) =

2|x|3x

1
2 

(iii) f(x) = 
1xx

1
24 

(iv) f(x) = 
2x

1x

e1

1





(v) f(x) = [[x]] – [x – 2], where [.] represents the greatest

integer function.

A function is discontinuous at all such
points where it is undefined.

(i) f(x) = 
1xsin2

1


f(x) is discontinuous when 2 sinx – 1 = 0

i.e.  sinx = 
2

1
  x = 2n + 

6


 , 2n + 

6

5
, n  I

(ii) f(x) = 
2|x|3x

1
2 

f(x) is discontinuous when x2 – 3|x| + 2 = 0
 |x|2 – 3|x| + 2 = 0
 (|x| – 1) (|x| – 2) = 0
 |x| = 1, 2
 x = ±1, ±2

(iii) f(x) = 
1xx

1
24 

 = 

4
3

2
1

x

1
2

2 





 

Now, x4 + x2 + 1 = 
4
3

2
1

x
2

2 





    1  x  R

 f(x) is continuous  x  R

(iv) f(x) = 
2x

1x

e1

1





f(x) is discontinuous when x – 2 = 0 and also

when 1 – 2x

1x

e 


 = 0   2x

1x

e 


 = 1
2x

1x




 = 0 x = 1.

Thus f(x) is discontinuous at x = 1, 2.
(v) f(x) = [[x]] – [x – 2] = [x] – ([x] – 2) = 2

 f(x) is continuous  x  R

Draw the graph and find the points
of discontinuity for f(x) = [2cos x], x  [0, 2], (where
[.] represents the greatest integer function)
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The suspicious points are:

when 2 cosx = 0  x = 
2

3
2


, ;

when 2 cosx = ± 1 x = 
3


, 

3

2
, 

3

4
, 

3

5
;

when 2 cosx = ± 2 x0, 2
Clearly from the graph given above, f(x) is

discontinuous  at x = 0, 
3


, 

2
3

2


, ,
3

2
, 

3

4
, 

3

5
, 2

Draw the graph and discuss the
continuity of f(x) = [sinx + cosx], x  [0, 2], where [.]
represents the greatest integer function.

f(x) = [sinx + cosx]

Let g(x) = sinx + cosx = 





 


4

2 xsin

The range of g(x) is [ 22, ].
The suspicious points occur when g(x) = 0 , ± 1

 x = 0, 
2


, 

4

3
, , 

2

3
, 

2

7
, 2

Clearly from the graph given above f(x)  is

discontinuous at x = 0, 
2


, 

4

3
, , 

2

3
, 

2

7
, 2.

Discuss the continuity of f(x) in [0,2]

where f(x) = 
[cos x], x 1

| 2x 3 | [x 2], x 1

 
   

and [.] denotes the greatest integer function.
For x  [0, 1], f(x) = [cos x]

Since [x] is discontinuous at x  I, we must check
continuity of [cos x] at points where cos x is an

integer. This happens at x = 0, 
2

1 , 1.

When x  [0, 1], the suspicious points  are x = 0, 
2

1
, 1.

Now for x  (1, 2)  –1 < x – 2 < 0
 [x – 2] = –1 Thus, f(x) = –| 2x – 3 |
Since | x | is a continuous function, f(x) is continuous in
(1, 2).
The right end point x = 2 is a suspicious point.

Hence, the suspicious points are 0, 
2

1
, 1, 

2

3
, 2.

Now  f(x) =  































)]x([x,

)x|x(|x,x

)x|x(|x,x

)xcos(x,

)xcos(x,

x,

0220

32322
2
323

2332
2
3132

011
2
11

10
2
100

01

Graph of f(x)

1/2 1 3/2 2
X

–1

Y

It is clear from the graph that f(x) is discontinuous at

x = 0, 
2

1
, 2 and continuous at all other points in [0, 2].

If f(x) =








533

312
2 .x}x{

x],x[ln)xsgn(

where [.] denotes the greatest integer function and {.}
represents the fractional part function, find the point
where the continuity of f(x) should be checked. Hence,
find the points of discontinuity.

Continuity should be checked at the
endpoints of intervals of each definition, i.e., x = 1, 3, 3.5.
{x2} is discontinuous for those values of x where x2 is
an integer. Hence, continuity should be checked when
x2 = 10, 11, 12 or x = 12,11,10 .
sgn(x–2) should be checked when x –2 = 0 or x = 2.
[lnx] should be checked when lnx = 1 or x = e.
Hence, continuity must be checked at x =1, 2, e, 3,

12,11,10 , 3.5.
Now, f(1) = 0 and

 


1x1x
lim)x(flim sgn(x–2) × [lnx] = 0
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Hence f(x) is continuous at x = 1.

 


2x2x
lim)x(flim sgn(x–2) × [lnx] = (–1) × 0 = 0

 


2x2x
lim)x(flim sgn(x–2) × [lnx] = (1) × 0 = 0

Hence, f(x) is continuous at x = 2.

 


3x3x
lim)x(flim sgn(x – 2) × [lnx] = 1

 


3x3x
lim)x(flim {x2} = 0

Hence, f(x) is discontinuous at x = 3.
Also f(x) is discontinuous at

x = 12,11,10 because of {x2}.

 


5.3x5.3x
lim)x(flim {x2} = 0.25 = f(3.5).

Hence, f(x) is discontinuous at x = 3, 12,11,10 .

Let f(x) = maximum (sin t, 0  t  x), 0  x

 2Discuss the continuity of this function at x = 
2


.

f(x) = maximum (sin t, 0  t  x), 0  x  2

0 
t

y = sin t


2

If x  0,
2

 
   , sin t  is an increasing function

Hence if t  [0, x], sin t will attain its maximum value at
t = x.

 f(x) = sin x if x  0,
2

 
  

If x  , 2
2

   
 and t  [0, x]

then sin t will attain its maximum value when t = 
2


.

 f(x) = sin 
2


 = 1 if x  , 2

2

   

 f(x) = 

if x 0,sin x
, 2

1 , if x , 2
2

     

       

Now, f 2

 
 
   = 1

x
2

lim




 f(x) = 
x

2

lim




 sin x = 1

x
2

lim




 f(x) = 
x

2

lim




 1 = 1.

Since f(
2


) = L.H.L.= R.H.L., f(x) is continuous at x =

2


.

If the function

f(x) = 
1/8

1/5

2 (256 7x)

(5x 32) 2

 
 

, x  0 is continuous

everywhere then find the value of f(0).
f(x) is continuous at all points except at

the point where (5x + 32)1/5 = 2 i.e. x = 0.
For continuity at x = 0,

f(0) = x 0
lim
  f(x) = 

h 0
lim
 f(0 + h)

[ note that here h assumes both positive and negative
values close to 0]

= – 
1/8 1/8

1/5 1/5h 0

(256 7h) (256)
lim

(5h 32) (32)

 
 

= – 

1/8 1/8

1/5 1/5h 0

(256 7h) (256)
.( 7h)

(256 7h) 256lim
(5h 32) (32)

.(5h)
(5h 32) 32



  
 

 
 

= 

1/8 1/8

1/5 1/5h 0

(256 7h) (256)
7 (256 7h) 256lim
5 (5h 32) (32)

(5h 32) 32



 
 

 
 

= 

1/8 1

1/5 1

1
.(256)7 8.

15 .(32)
5





n n
n 1

x a

x a
lim na

x a




 
  

Q

= 
-

-
= =

7

4 3

7 (2) 7 1 7. .
8 8 64(2) 2

.

Hence, f(0) = 
7

64
.

If f(x) is a continuous function for all
real values of x and satisfies x2 + (f(x) – 2) x + 2 3  – 3 –

3  . f(x) = 0,   x  R, then find the value of f( 3 ).
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As f(x) is continuous for all x  R.

x 3
lim


 f(x) = f( 3 ) where

f(x) = 
2x 2x 2 3 3

3 x

  


, x  3

x 3
lim


 f(x) = 
2

x 3

x 2x 2 3 3
lim

3 x

  


= 
x 3

(2 3 x)( 3 x)lim 2(1 3)
( 3 x)

  
 


 f( 3 ) = 2(1 – 3 ).

Let y = f(x) be defined parametrically
as y = t2 + t | t |, x = 2t – | t |, t  R. Then examine the
continuity of f(x) at  x = 0.

y = t2 + t | t | and  x = 2t – | t |
When t  0,

x = 2t – t = t, y = t2 + t2 = 2t2

 x = t and y = 2t2

 y = 2x2   x  0
When t < 0,
 x = 2t + t = 3t and y = t2 – t2 = 0.
 y = 0 for all x < 0.

Hence, f(x) = 
22x , x 0

0, x 0

 



 which is clearly continuous

for all x as shown graphically below.

Let f(x) = x3 – 3x2 + 6  x  R, and

g(x) = max f(t),x 1 t x 2, 3 x 0
1 x, for x 0

      
 

Test continuity of g (x) for x  [–3, 1].
Since f(x) = x3 – 3x2 + 6

f (x) = 3x2 – 6x = 3x (x – 2)
For maxima and minima, f (x) = 0
 x = 0, 2

f(x) = 6x – 6
f (0) = –6 < 0  (local maxima at x = 0)

f (2) = 6 > 0     (local minima at x = 2)
Also, f(0) = 6.
Now graph of f(x) is :

O 1 2 3 X–1

2

6

y = f(x)

f(x) = 2

Y

Clearly f(x) is increasing in (– , 0) and (2, ) and
decreasing in (0, 2).
Consider x + 2 < 0  x < – 2
For –3  x < – 2,

–2  x + 1 < –1 and –1  x + 2 < 0
Since f(x) increases, the maximum value of g(x) is f(x +2).
 g(x) = f(x + 2) if  –3  x < – 2.
Now consider x + 1 < 0 and 0  x + 2 < 2
For – 2  x < –1, g(x) = f(0).
Now for x + 1  0 and x + 2 < 2
i.e. –1  x < 0, g(x) = f(x + 1).

Hence, g(x) = 

f(x 2) , 3 x 2

f(0) , 2 x 1

f(x 1) , 1 x 0

1 x , x 0

ì + - £ < -
ï
ï - £ < -ï
í

+ - £ <ï
ï
ï - ³î

Now, we can check that g(x) is continuous in the interval
[–3, 1].

Consider the function

f (x) = x 1 1
x (1 x) (1 x) (1 2x)
    

1 ....
(1 2x) (1 3x)

    
 for x  0.

Find  f (0)  if  f (x)  is continuous at  x = 0 .
We have the sum upto n terms as

 
1 (1 2 x) (1 x) (1 3x) (1 2 x)

1 x (1 x) (1 2 x) (1 2 x) (1 3x)

     
 

    
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+ ...... + 
(1 n x) 1 n 1 x

1 n 1 x (1 n x)

( )
( )
   

  

=  
2

1

1

1


x nx
  upto  n  terms when  x¹ 0.

Now, f(x) = 2 if x 0 and n1 x    .

Thus, for continuity of f at x = 0, f(0) should be equal
to the limiting value of f which is 2.

Examine the continuity of the function

f (x) = n
lim
 

sin

( sin )

x

x n1 2 2
 in (0, ).

f (x)  =  n
lim
  2 n

sin x

1 (2 sin x)

=  

5
6 6

51
4 6 6

5
6 6

sin x, 0 x or x

, x or

0, x







     

 

  


We can see from the simplified definition of f that it is

discontinuous  at  x  =  

6

  and  
5

6


.

Given f (x) = 
n

r r 2

r 1

(x x ) , x 1



    and

g(x) = 
 2n 2 2

n
lim f (x) 2n)x (1 x ) for x 1

1, for x 1

 

 
    

  

show that g(x) is continuous for all x in the domain.

f (x) = 








 

n

1r
r2

r2 2
x
1x

= n2
x
1x

n

1r
r2

n

1r

r2 


= (x2+x4+...+ x2n) +







  n242 x

1.....
x
1

x
1

 + 2n

= n2

x
11

x
11

x
1

)x1(
)x1(x

2

n2

22

n22










 





Thus, f (x) = 
  n2

x)x1(
x1

x1
)x1(x

n22

n2

2

n22









2n
2

2 2n
(1 x ) 1f (x) x 2n
1 x x
       

,  x  ± 1

 (f(x) – 2n) (1 – x2) = 





  n2

2n2

x
1x)x1(

Now consider

g (x) =  2n 2 2

n
lim f(x) 2n)x (1 x ) for x 1 


   

= 
2n 2

2n 2n 2n

1 1
lim (1 x ) x · , x 1

x x 

     
 

= 
2n 2n 2

2n 2n 2n

(1 x )(x 1)
lim

(x )(x )





 

= 2n 2n 2n

1 1
lim 1 1

x x 

      
  

Now g (x) = 
1 if | x | 1

undefined if | x | 1
1 if x 1

 
 
  

The domain of g(x)is x  (–, –1]  [1, ).
Now clearly g is continuous for all x in the domain.

Let f : R  R be a function which
satisfies f(x + y3) = f(x) = (f(y))3   x, y  R. If f is
continuous at x = 0, prove that f is continuous everywhere.

To prove 
h 0
lim
  f(x + h) = f(x).

Put x = y = 0 in the given relation
f(0) = f(0) + (f(0))3  f(0) = 0

Since f is continuous at x = 0, 
h 0
lim
  f(h) = f(0) = 0.

Now, 
h 0
lim
  f(x + h) = 

h 0
lim
  f(x) + (f(h))3

= f(x) + 
h 0
lim
  (f(h))3 =  f(x) + 0 = f(x).

Hence f is continuous for all x  R.
If f(x + y) = f(x) . f(y) for all x, y  R

and f(x) = 1 + g(x) . G(x) where 
0x

lim
  g(x) = 0 and 

0x
lim
 G(x)

exists, prove that f(x) is continuous at all x  R.

0x
lim


g(x) = 0   
0h

lim


 g(h) = 0       ...(1)

0x
lim


G(x) exists  
0h

lim


G(0 + h) = finite        ...(2)

Now, 
0h

lim
  f(x + h) = 

0h
lim
  f(x) . f(h) = f(x) 

0h
lim


 f(h)
[Q f(x + y) = f(x) . f(y)]

= f(x) . 
0h

lim
  {1 + g(h) G(h)},

  [using the given relation]
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= f(x) . {1 + 
0h

lim
  g(h) . 

0h
lim
 G(h)}

= f(x) . {1 + 0 . finite}, using (1) and (2)
= f(x)


0h

lim
 f(x + h) = f(x).

 f(x) is continuous everywhere.

Single Point Continuity
There are some functions which are continuous only
at one point in an interval, though they are defined
everywhere in the interval.

For example, f(x) = 
x if x Q

x if x Q


 

 is continuous
only at x = 0. The limit of the function does not exist
anywhere except at the point x = 0.

f(x) = 
x if x Q
0 if x Q


 

 is continuous only at x = 0.

f(x) = x if x Q
1 x if x Q


   is continuous only at x = 1/2.

f (x) =  2x if x Q
1 if x Q


   is continuous only at x = 1 or – 1.

Find the values of a and b if the
function f(x) = x2 + ax + 1,      if x is rational

      = ax2 + bx + 1,    if x is irrational
is continuous at x = 1 and 2.

Continuity at x = 1 implies
a + 2 = a + b + 1

which gives   b = 1.
Continuity at x = 2 implies

2a + 5 = 4a + 2b + 1
which gives   a = 1.

 Point  functions are treated as
discontinuous. If the domain of the function contains
a countable number of points then it is discontinuous
at all of these points.
For example, f(x) = 1 x x 1    is not continuous
at  x = 1. Here the function is defined only at x = 1.

Also, f(x) = 1
1

 }x{}x{  is defined only for integers.

Hence, it is discontinuous at all points in the domain.

BBBBB
1. At what points are the tangent and cotangent

functions continuous?
2. Where are the following functions discontinuous?

(i) sec x (ii) 2

2

x1

x1




3. Prove that the function

f(x) = 
x 1 , –1 x 0,
–x , 0 x 1
  

  
is discontinuous.

4. For  what  value of  ‘ k ’  is the function ,

f (x)  =  
sin

,

,

5
3 0

0

x
x x

k x










  continuous ?

5. Is the function

f(x) = 












1x0if2x
0x2if1x
2x3if1x2

continuous everywhere in (–3, 1) ?
6. If b and c are given, find all values of a for which

f(x) = 2

2cosx if x c,

ax b if x c


  

 is continuous.

7. Find constants a and b so that the given function
will be continuous for all x in the domain.

(i) f(x) = 

tanax
if x 0

bx
4 if x 0

ax b if x 0

 



  


(ii) f(x) = 

12sin(a cos x) if 1 x 0

3 if x 0

ax b if x 0

   



  

8. For what (if any) values of x are the following
functions discontinous:
(i) y = [x2], (ii) y = [ x ],

(iii) y = ])x[x(  , (iv) y = [2x],
(v) y = [x] + [–x] ?
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9. (i) For x  0, let f(x) = [1/x], where [.] denotes the
greatest integer function. Sketch the graph

of f over the intervals [–2, –
5

1
] and [

5

1
, 2].

What happens to f(x) as x  0 through positive
values? and through negative values?
Can you define f(0) so that f becomes
continuous at 0?

(ii) Answer the same when f(x) = (–1)[1/x] for x  0.
(iii) Answer the same when f(x) = x(–1)[1/x] for x  0.

10. If f(x) is continuous on (–), then it has no
vertical asymptotes. True or false.

11. Find the numbers at which f is discontinuous. At
which of these numbers is f continuous from the
right, from the left, or neither ?

(i) f(x) = 













2xif)2x(

2x0ifx2

0xifx1

2

2

(ii) f(x) =  













1xifx2

1x0ife

0xif2x
x

12. Choose parameters, entering into the definition
of the function such that the function f(x) becomes
continuous:

(i)
1/(x 1)

2

x 12 ,
f(x)

x 1ax bx 1,

 
   

(ii)
2 x 1x x 1,f (x)

x 1.sin (x a)),
   

    
13. Locate the discontinuities of the following

functions:

 (i) y = x/1e1
1

 (ii) y=ln(tan2x)

14. Let f(x) = 
2x/12 for x  0.

(i) Find x
lim
 f(x) (ii) Find 

0x
lim
 f(x)

(iii) Is it possible to define f(0) in such a way that
f is continuous for all real x ?

15. Determine the set of all points where the function

f(x) = 
|x|4

x3


 is continuous.

16. Examine the continuity of the function over x  R.

(i) f(x) = tan 
x

1
(ii) f(x) = 

)4x)(1x(x

1x
2 



(iii)  f(x) = [x] + [–x].

BBBBB

17. Let f(x) = 

2

1/2

1 cos(4x)
, x 0

x
a, x 0

x
, x 0

(16 x) 4

 


 

 
  

then find the value of ‘a’ for which f(x) is
continuous at x = 0.

18. If f(x) = sgn 













 

2

1
x  [ln x], 1 < x  3

 =   {x2}, 3 < x  3.5
Find the point where the continuity of  f(x)  should
be checked.

19. The function f(x) is defined as

f(x) = 
2 1/xx cose , x 0

1, x 0
 



.

Show that f(x) is discontinuous at x = 0.

20. If

f(x) = 
x for rational values of x in [0, 1]

1 2x for irrational values of x in [0, 1]

 

Show that f(x) is continuous only at  x = 1/3.

21. Find the points of continuity of f(x) = 
1x

x2x2


 .

22. If the function f given by

f(x) = 
3

tan 2ax
if x 0

3bx
c if x 0

| x | x 1
if 0 x 1

x x 1
b if x 1

 





    
 

is everywhere continuous, find a, b, and c.
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23. Let f : [0, )  [0, ),

f(x) = ....xxx  . Is f  right continuous at 0?
24. What are the points of discontinuity of the

function

f(x) = 
cosx if x Q
sin x if x Q


 

?

25. Let f be the “nearest integer, with rounding down”
function. That is,

f(x) = 1
2

the integer nearest to x if  x is not
midway between two consecutive integers

x –  if  x is midway between two 
consecutive integers









(i) Does 
 53.x

lim f(x) exist ?  If so, evaluate it.

(ii) Does 
x 3.5
lim


f(x) exist ?  If so, evaluate it.

(iii) Is f continuous at 3.5 ?
(iv) Where is f not continuous ?

26. Test the continuity of the function
2nn

xy lim
1 (2cos x)


 .

27. If f(x) = x + {– x} + [x] ,where [  ] denotes the
greatest integer function.  and {.} denotes the
fractional part function. Discuss the continuity of
f in [–2 , 2] .

28. Discuss the continuity of the function
f(x) = [[x]] – [x – 1], where [.] denotes the greatest
integer function.

29. Find all possible values of a and b so that f (x) is
continuous for all x  R if

f(x) = 















xif,3xcos

x0if,b2
0x1if,|ax3|

1xif,|3ax|

2
x

x2sinb .

30. Examine the continuity at x= 0 of the function

f(x) = 
x x x

x 1 (x 1)(2x 1) (2x 1)(3x 1)
 

     +....

2.3 CLASSIFICATION  OF
DISCONTINUITY

Discontinuity of first and second kind
Let a function f be defined in the neighbourhood of a
point a, except perhaps at a itself. Also let both the one-
sided limits 

x a
lim


 f(x) and 

x a
lim


 f(x) exist, but the

conditions of continuity are not satisfied. Then the
function f(x) is said to have a discontinuity of the first
kind  at the point a.

For instance, the function f(x) = 
1
x

x , x 0
1 2

1, x 0

 
 



has a discontinuity of the first kind at x = 0, since both
the one-sided limits are 0 but this is not equal to f(0)
which is 1.

The function f(x) = 
x

| x |
 has a discontinuity of the first kind

at x = 0 since the left hand limit is 
x 0
lim


f(x) = –1, while the

right hand limit is lim
+®x 0

f(x) = 1 i.e. the one sided limits
exists.

1

Y

X0
–1

The function y = 

2x 1 for x 0,

5 for x 0,

x for x 0,

  
 
  

Y

1

X0

5

has a discontinuity of the first kind at x = 0 because the
one-sided limits exist.
A function f(x) having a finite number of discontinuities
of first kind in a given interval is called sectionally or
piecewise continuous function.
Sometimes, a function f is discontinuous at x = a
because x a

lim


f(x) does not exist as one or both of the
one-sided limits do not exist.
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The function f(x) is said to have discontinuity of the
second kind at x = a, if atleast one of the one-sided
limits (L.H.L. or R.H.L.) at the point x = a does not exist
or equals to infinity.

Let us show that for the function f(x) = 
x3

1


, the point

x = 3 is a point of discontinuity of the second kind.
Consider the limits on the left and on the right at the
point x = 3:

   
x

lim
x  3

1
3

 =  , 
x

lim
x  3

1
3

 = –

Thus, the one-sided limits of the function f(x) at the
point x = 3 are infinite, and according to the definition,
this means that the function f(x) has a point of
discontinuity of the second kind at this point.

The function y = 
1

(x 2)(x 3)   has no one-sided limits
at x = 2 and x = 3. Therefore x = 2 and x = 3 are
discontinuities of the second kind. We can see the
graph of the function below.

0 2 3 X

Y

The function y = ln |x| at the point x = 0 has the limit

0x
lim
  ln |x| = –. Consequently, 

x 0
lim
  f(x) (and also the

one-sided limits) does not exist. Hence, x = 0 is a
discontinuity of the second kind.
It is not true that discontinuities of the second kind
only arise when 

x a
lim


f(x) = . The situation can be

different. The function y = sin (1/x), does not have the
one-sided limits as x  0 since the values of the
function sin (1/x) do not approach a certain number,
but oscillate an infinite number of times within the
interval from –1 to 1 as x  0.
It has a discontinuity of the second kind at x = 0. The
graph is shown below.

0 X

Y
1

Removable Discontinuity
A function f is said to have a removable discontinuity at
x = a, if 

x a
lim


f(x) exists but is  not equal to f(a). In this
case we can  redefine the function such that

x a
lim


f(x) = f(a) and make it continuous at x = a.

For example, f(x) = [x] + [–x] has a removable
discontinuity at x = 1 since x 1

lim
 f(x) = – 1, but it is  not

equal to f(1) which is 0.
Removable discontinuity can be further classified as:

(i) Missing  Point  Discontinuity
A function f is said to have a missing  point discontinuity
at  x = a  if 

x a
lim


f(x) exists and the function is undefined
at  x = a.

For example, f(x) =  
2(1 x)(9 x )

(1 x)
 

   has  a  missing

point discontinuity at  x = 1 since x 1
lim
 f(x) = 8 but the

function is undefined at x = 1.
Y

X

(ii) Isolated  Point  Discontinuity
A function f is said to have an isolated  point
discontinuity at  x = a  if 

x a
lim


f(x) exists and the function
is defined at  x = a, but they are unequal.

For example, f(x) = 

2x 4 , x R – {2}
x 2

1 , x 2

 


 
 

 has an

isolated  point discontinuity at  x = 2  since 
x 2
lim


f(x)
exists and is equal to 4, but it does not match with the
function's value at x = 2, which is 1.

Also the function f (x) = [x]+[–x] = 0 if x I
1 if x I


 

has isolated point discontinuities at all integral x as
shown in the figure

Y

X

The function f(x) = sgn(cos2x–2sinx+3)
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              = sgn( 2(2 + sin x)(1 – sinx) )

     = 

0 if x 2n
2

1 if x 2n
2

   
    


has an isolated point discontinuity as x=2n+ 2


.

     
X

Y1

–

Continuous extension of  a function

A function F is called a continuous extension of a given
function f, at a removable discontinuity a of f,  if the
values of F and f agree at every point of the domain of
f and the value of F at a is the limit of f at a.
For example, let f(x) = (x4 – 4)/(x – 2), x  R – {2}.
Then x = 2 is a missing point discontinuity.

Y

X

But since
2

x 2 x 2

x 4
lim lim(x 2) 4

x 2 


  


,

we see that x = 2 is a removable discontinuity.
Here F is defined as

F(x) = 












2x,4

}2{–Rx,
2x
4x2

It is the continuous extension of f at x = 2.

The function f(x) = 

2x 9 , x R – {3}
x 3

4 , x 2

 



 

is defined for all x  R.  At x = 3 it has the following left
hand and right hand limits:

2

x 3

x 9lim
x 3




 = 
x 3 0
lim
  (x + 3) = 6,

2

x 3

x 9lim
x 3




 = 
x 3 0
lim
   (x + 3) = 6,

that is, the one-sided limits are equal. Hence, 
x 3
lim
  f(x) = 6.

However, the point x=3 is a discontinuity in the function
since the limit is not equal to the function's value.
Let us see how we can make the function continuous
at x = 3. Consider the function F(x) defined as

F(x) = 

2x 9
for x 3

x 3
6 for x 3

 



 

The values of F(x) coincide with those of the function
f(x) = (x2 – 9) / (x – 3) everywhere except at x = 3, where
the “old” function was defined as 4, while at x = 3 the
“new” function has a value of 6.
The function F(x) fulfills the equality

3x
lim


F(x) = F(3) = 6,
which means that F(x) is continuous at x = 3. Thus, the
discontinuity of f(x) has been removed.
Note that we were able to get a continuous function
F(x) from the discontinuous function f(x) because the
one-sided limits were equal.

Irremovable Discontinuity
A function f is said to have an irremovable discontinuity
at x = a, if x a

lim
 f(x) does not exist. In this case we cannot

redefine the function such that x a
lim
 f(x) = f(a) and make

it continuous at x = a.
Irremovable discontinuities can be further classified as :

(i) Finite discontinuity
A function f is said to have a finite or jump discontinuity
at  x = a  if 

x a
lim


f(x) does not exist since the left hand
limit and the right hand limit are unequal, but the one-
sided limits do exist.
For instance, f(x) = [x] has a finite or jump discontinuity
at  all integral  x.

Jump of a function at a point
If x = a is a point of finite discontinuity of the function f(x),
then the graph of this function undergoes a jump at x = a.
The difference R.H.L. – L.H.L. i.e. f(a+) – f(a–) is called
the jump in the function at x = a.
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The graph of the function f(x) = sgn(x) makes a jump of
2 units at the point x = 0 since

f(0+) – f(0–) = 1 – (–1) = 2.
The difference between the greatest and least of the
three numbers f(a+), f(a–), f(a) is the saltus or measure
of discontinuity of the function at the point a.

(i) 1

x 0

1
lim tan

x




 
 
 

  

2
)0(f

2
)0(f











; jump =

(ii)
x

| sin x |
lim

x –®p p
 

f( ) 1

f( ) 0





  

 
 ; jump = –1

(iii)
x 2

[x]
lim

x
  

2
1)2(f

1)2(f









  ;  jump = 2
1

(iv) x/1e1

1
)x(f 
  and f(0) = e .

h/h)h/(h e
lim

e
lim)(f 10010 1

1
1

10 









1
01

1

e1

1






 

and h/h)hh/(h e
lim

e
lim)(f 1010 1

1
1

10










0
1

1

e1

1






  .

Hence f is discontinuous at x = 0, the discontinuity
being of the first kind and irremovable. This function
has a jump of one unit at 0 since f(0+) – f(0–) = 1. The
saltus is e.

(ii) Infinite discontinuity
A function is said to have an infinite discontinuity at
x = a  if atleast one of the one-sided limits is infinite.
For instance, the following functions have infinite
discontinuity:

(i) f(x) = x1
x


at x = 1  

f(1 )

f(1 )





 

 

(ii) f(x) = 2tanx at x = 2











 










 





2
f

0
2

f

(iii) f(x) = 2x
1

 at x = 0  








)0(f

)0(f

(iv) f(x) = 
2x , x 0

ln x , x 0
 



has an infinite discontinuity at  x = 0 since the right
hand limit is infinite (note that the  left hand limit is 0.

Pole discontinuities
The concept of pole discontinuity  is related with
infinite limit. For a point x = a to qualify as a pole of a

function f, we must have 
x a

1lim 0
f (x)

 .

What this means roughly is that "f(x) becomes
numerically big and stays big as x gets close to a".

The function y = 
1

(x 2)(x 3)   has pole at x = 2 and

x = 3. Note that  f(x) = 
2x , x 0

ln x , x 0
 



does not have a pole discontinuity at x = 0, even if it
has an infinite discontinuity at  x = 0 since the left hand
limit is finite.
Again, the reciprocal of a polynomial of degree n has
atmost n poles : in fact, the real zeros of a polynomial
are the poles of its reciprocal.
In particular, the reciprocal of the quadratic polynomial
with negative discriminant has no poles. The poles of
a rational function in "lowest terms" are the zeros of
the denominator.
The zeros of sin x and cos x are respectively the poles
of cosec x and sec x.
Consider the following graph to understand the nature
of discontinuity.

Y

X
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From the above graph note that
(i) f  is continuous at x = – 1
(ii) f  has non removable (finite type) discontinuity at x=0

(iii) f  has isolated discontinuity at x = 1
(iv) f  has missing point discontinuity at x = 2
(v) at x = 3 non removable infinite type discontinuity.

(iii) Oscillatory discontinuity
A function is said to have an oscillatory discontinuity at
x = a  if atleast one of the one-sided limits does not exist
becase of too much oscillation in the values of the function.

For example, f(x) = sin
1

x
 has an oscillatory

discontinuity at  x = 0 .

The function f(x) = 



  )|x|nsin(

3
11 l  oscillates

between 0 and 1 at x = 0 and hence has a oscillatory
discontinuity at x = 0.

 In all the cases of irremovable
discontinuity the value of the function at x = a (point
of discontinuity) i.e. f(a) may or maynot be defined.

If f(x) = 2

x, x 1

x , x 1


 

then find the  type of discontinuity at x = 1.

f(x) = 2

x, x 1

x , x 1


 

–x 1
lim


 f(x) = –x 1
lim


 x = 1

and
x 1
lim


 f(x) = 

x 1
lim


 x2 = 1


x 1
lim


 f(x) = 

x 1
lim


 f(x) = 1

but f(1) is not defined.
So, f(x) has a missing point removable discontinuity at
x = 1. The discontinuity is of first kind.

Let f(x) = cos–1 {cot x},  x < 
2



[x] – 1,    x
2




Find jump of discontinuity at x 
2


  .

f(x) =  

1cos {cot x} if x
2

[x] 1 if x
2

  
    

x
2

lim



 f(x) = 

x
2

lim




cos–1 {cot x}

= cos –1 0 = 
2


.

x
2

lim




 f(x) = 
x

2

lim




 [x] – 1 =  – 1.

 The jump of discontinuity = R.H.L. – L.H.L.

=  – 1 – 
2

  = 
2

  – 1.

Let f (x) = 2)x2(
x2sinxcos2




,

g (x) = 



4x8
1e xcos

, and h (x) = 
f (x) , x / 2
g(x), x / 2

 
  

then show that h has an irremovable discontinuity
at x = /2.

h (x) = 

2

cos x

2cosx sin 2x
, x

2( 2x)

e 1
, x

8x 4 2



    


  

  
L.H.L. at x = /2

= 2h 0

2sin h sin 2hlim
4h



= 2h 0

2sin h(1 cos h)lim
4h


 = 0.

R.H.L. =  
sin h

h 0

e 1lim
( 2) h 4


    

= 
sin h

h 0

e 1 sin hlim ·
8h sin h


 = 8

1
.

Thus, h 2

 
 
 

 = 0 and  h 2

 
 
 

 = 
8
1

We have h 2

 
 
 

  h 2

 
 
 

.

Since L.H.L. R.H.L., h(x) has an irremovable
discontinuity at x = /2.

State the number of point of
discontinuity and discuss the nature of discontinuity

for the function f (x) = 
1

ln| x |  and also sketch its graph.
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f (x) = 

1
if x 0, x 1

ln x
1

if x 0, x 1
ln( x)

  

   
 

The function is obviously discontinuous at x = 0, 1,
–1. as it is not defined.

x 0

x 0

lim f(x) 0

lim f(x) 0








 
 

 Limit exists at x = 0.

Hence there is a removable discontinuity (missing
point) at x = 0.

x 1

x 1

lim f(x)

lim f(x)








  
 

Limit dne.

Hence there is a nonremovable discontinuity (infinite
type) at x = 1.

x 1

x 1

lim f(x)

lim f(x)








 
  

Limit dne.

Hence there is a non removable discontinuity (infinite
type) at x = –1.
Note that f (x) is even   the graph is symmetric about
y axis. The graph of f (x) is as follows.

X

Y

Let f(x) = n
lim
 2

1

1 nsin x
, then find

f 
4

 
 
 

 and also comment on the continuity at x = 0.

Let f(x) = n
lim
 2

1

1 nsin x

f 
4

 
 
 

= 
n
lim
 2

1

1 n . sin
4




= 
n
lim


 1
1

1 n
2

   
 

 = 0

Now,

      f(0) = 
n
lim
  2

1

n . sin (0) 1  = 
1

1 0
 = 1

x 0
lim
 f(x) =

x 0
lim
 2n

1
lim

1 n sin x

 
  

{form
1

1
 
  

}= 0

Here sin2x is a very small quantity but not zero.
 Thus f(x) is discontinuous at x = 0. The type of
discontinuity is isolated point removable discontinuity.

Examine the function

f(x) = 2 nn

xlim
1 (4sin x)   for continuity in (0, . Plot

its graph and state the nature of discontinuity.

For  x = 
6


 or 
6

5
,  4sin2x = 1

 f (x) = n
lim
 2

x
11

x
n 


.

For 6


 < x < 6
5

 , 4 sin2x > 1

 f (x) = n
lim
 n

x
0

1 (greater than1)


 .

For 0 <  x  <  
6


  or  
6

5
 < x  <  , 4 sin2x < 1

 f (x) = n
lim
 n

x
x

1 (less than1)


 .

Hence f (x) = 

























6
5x

6
for0

6
5or

6
xfor

2
x

x
6

5or
6

x0forx

The graph of f(x) is as shown above.
From the graph it is clear that f (x) is continuous

everywhere in (0, except at 6


 and 6
5

and where
it has removable discontinuity of finite type.
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Consider f(x)

= xtanba

xsin1

x2sin

ab
1 2

2

a
ab

a
ab











 


 ,

for b > a > 0 and g (x) = sgn (f(x)). Find whether g (x) is
continuous at x = 0 or not and state the nature of
discontinuity, if discontinuous.

f(x)  = 
2

2

1 b a ·sin2x· a b tan x·
b a a (b a)sin xa ·

a

 
  

=  
xsinbxcosa

xtanba·x2sin
22

2





=  
xsinbxcosa|xcos|

xsinbxcosa·x2sin
22

22





Hence, f (x) = |xcos|
x2sin

Now, g (x) = sgn 







|xcos|

x2sin

We have g (0) = 0

g (0+) = 
h 0

sin 2hlim
cosh

 
 
 

 =  
h 0
limsgn 2sin h


 = 1.

g (0–) = 
h 0

2sin 2hlimsgn
cosh

 
 
 

=  
h 0
lim sgn 2sin h




  = – 1
Hence, g (x) = sgn (f(x))  is discontinuous at x = 0. The
nature of discontinuity is irremovable discontinuity of
finite type.

Let

f(x) = 

x

2 2

e 1
if x 0

(1 x ) 1 x

2
if x 0

3

 


  


 

,

then find whether f(x) is continuous at x = 0 or not and
state the nature of discontinuity, if discontinuous.

Limit = 

x
2 2

x 0 2 2 2 2

e 1 ·x · (1 x ) 1 x
x

lim
(1 x ) 1 x · (1 x ) 1 x

     
 

     

 = 2 2 2x 0

2 ·xlim
(1 x ) (1 x )     = 4 2x 0

2 xlim
x 3x 

Now R.H.L.  = 
3
2

   and L.H.L. = – 
3
2

Hence, f(x) is discontinuous at x = 0. The nature of
discontinuity is irremovable discontinuity of finite type.

     CCCCC
1. Let f(x) = x, x < 1

= x2, x > 1
= 2, x = 1

Find the type of discontinuity at x = 1.
2. Let f(x) = x, x < 1

= 2x, x 
Find the type of discontinuity at x = 1.

3. Prove that the function h(x) = 2tanx has infinite
discontinuity at x = /2.

4. If f(x) =
x 2x

| x 2 |



  find the points of discontinuity

and determine the jumps of the function at these
points.

5. If  
ax

sin
ax

)x(f



11 find f(a+) and f(a–). Is the

function continuous at x = a?
6. Test the discontinuity of the following function

at x = a and specify the type of discontinuity.

ax
eccos

ax
)x(f




11 ,  x a and f(a) = 0.

7. The function f(x) = tan –1 
2x

1


is meaningless for

x = 2. Is it possible to define the value of f(x) in
such a way that the redefined function becomes
continuous at x = 2 ?
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8. Which of the following functions f has a removable
discontinuity at a? If the discontinuity is
removable, find a function g that agrees with f for
x  a and is continuous on R.

(i) f(x) =  2–a,
2x

8x2x2





(ii) f(x) =  7a,
|7x|

7x 



CCCCC
9. Test the function f(x) for continuity and indicate

the kind of discontinuity, if any.
(i) f(x) = x sin (1/x)
(ii) f(x) = sin(1/x),
(iii) f(x) = {x},

(iv) f(x) = 




number a rational is x if 1

number irrational an isxifx2

(v) f(x) = 
1x

2x
3

2




,

(vi) f(x) = tan–1(1/x),

(vii) f(x) = )x1/(xe1

1


,

(viii) f(x)=ln
)3x)(1x(

x2



(ix) f(x) =  
2,x 1for x

1,x 0for x








2

2

(x) f(x) = 







1  |x|          ,  |1-x|

1,  |x|    , x/2)os(c

10. What is the nature of the discontinuities at x = 0
of the functions:

(i) y = 
x

xsin
(ii) y = [x] + [–x]

(iii) y = cosec x (iv) y = 







x

1
,

 (v) y = 3

x

1






 (vi) y = cosec

x

1

(vii) y = )x/1sin(

)x/1sin(
 ?

11. Can f(x) = x(x2 – 1)/|x2 – 1| be extended to be
continuous at x = 1 or –1?

12. Show that the only discontinuities a rational
function can have are either removable or infinite.
That is, if r(x) is a rational function that is not
continuous at a, show that either a is a removable

discontinuity or 
ax

lim


 |r(x)| = .

13. Let f(x) = 
n
lim
  (1 + x)n. Comment on the continuity

of f(x) at 0.
14. Investigate the following functions for continuity:

(i)
4

37
2 




x

x
y

(ii) y = (1 + x) tan –1
2x1

1


(iii) y = 

x1

1

e1

1


15. Investigate the following functions for continuity:

(i) y = nn x1

1
lim


 (x  0)

(ii) y = 1

n
lim(x tan nx)



2.4 ALGEBRA OF CONTINUOUS
FUNCTIONS

It is easily deduced from the theorems on limits that
the sum, product, difference or quotient of two
functions which are continuous at a certain point are
themselves continuous at that point (except that, in
the case of the quotient, the denominator must not
vanish at the point in question).
Further it is true that composition of a continuous

function with a continuous funcion is a continuous
function.
1. If f(x) and g(x) are continuous at x = a, then the

following functions are also continuous at x = a.
(i) cf(x) is continuous at x = a, where c is any

constant.
(ii) f(x)   g(x) is continuous at x = a.
(iii) f(x). g(x) is continuous at x = a.
(iv) f(x)/g(x) is continuous at x = a, provided

g(a)  0.
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Theorem If the functions f(x) and g(x) are
continuous at a point x = a, then the sum h(x) = f(x) +
g(x) is also continuous at the point x = a.
Proof Since f(x) and g(x) are continuous, we can
write

ax
lim
 f(x) = f(a) and 

ax
lim


g(x) = g(a)
By theorem on limits, we can write

ax
lim
 h(x) = 

ax
lim
  [f(x) + g(x)]

    = 
ax

lim
  f(x) + 

ax
lim
 g(x) = f(a) + g(a) = h(a).

Thus, the sum h(x) = f(x) + g(x) is a continuous function.
Note, as a corollary, that the theorem holds true for
any finite number of terms.
Theorem The sum of a finite number of functions
continuous at a point is a continuous function at the
point.
Proof Suppose we are given a definite number of
functions f1, f2, ...,fn continuous at a point x = a. We
have to prove that their sum g = f1+ f2 + ... + fn is a
continuous function at that point. The functions f1, f2,
...,fn  being continuous, we have

1 1x a
limf (x) f (a),


  2 2x a
limf (x) f (a),


 .......

n nx a
limf (x) f (a),




By the theorem on the limit of a sum we write

x a
lim g(x)


 1 2 nx a
lim(f f ... f )


  

= 1x a
lim f (x)


 2x a
limf (x)


 ..... nx a
lim f (x)




=  f1(a) +  f2(a) + .... +  fn(a) = g(a).

Thus, 
x a
limg(x) g(a)


 which is what we wished to

prove.
By the above theorem we at once recognize that the
functions y = x2 + 3x + x,

y = sin3x – x sin x – (x4 – 1) cos x, and
y = sin x – 2x/(x2 + 1) are continuous at every

point in a domain common to all functions involved.
We can show that a polynomial is a continuous
function.The polynomial function P : R  R is given
by P(x) = a0 + a1x + .... + anxn, where a0, a1,...., an  R.
The functions f1, f2, ...., fn : R R defined by
f1(x) = x, f2(x) = x2, ..., fn(x) = xn are continuous.
Hence, the functions a1f1, a2f2, ..., anfn are also
continuous functions. Therefore, the function

P(x) = a0 + a1f1 + .... + anfn

is also continuous as the sum of continuous functions
is a continuous function.
Theorem The product of a finite number of
functions continuous at a point is a continuous
function at that point.
Proof Let g = f1. f2 ..... fn retaining the notation of
the above theorem and using the theorem on the limit
of a product, we get

x a
lim g(x)


 1 2 nx a
lim(f .f ....f )


= 1x a
lim f (x).
 2x a

lim f (x).
 ..... nx a

.lim f (x)


=  f1(a) . f2(a) ...... fn(a) = g(a)
which is what we set out to prove.
TheoremTheoremTheoremTheoremTheorem The quotient of two functions continuous
at a point x = a is a continuous function at the point x = a
provided that the denominator does not turn into zero at
the point.

Proof If g = 
2

1

f

f
, then by the theorem on the limit of

a quotient, we have

x a
limg(x)


  1
x a 2

f (x)lim
f (x)  =

1x a

2x a

lim f (x)

lim f (x)




= 1

2

f (a) g(a)
f (a)



if x a
lim
 f2(x) = f2(a)  0. Therefore g = 

1

2

f

f  is a continuous
function at the point x = a.
2. If f(x) is continuous at x = a and g(x) is discontinuous

at x = a, then we have the following results.
(i) Both the functions  f(x) + g(x) and  f(x) – g(x)

are discontinuous at x = a.
For example, consider, f(x) = x and g(x) = {x}.
Here f(x) is continuous at x = 0 and g(x) is
discontinuous at x = 0. Both the sum function
x + {x} and the difference function  x – {x} are
discontinuous at x = 0.

(ii) f(x). g(x) is not necessarily discontinuous at
x = a. We need to find the result by getting
the limit of the product f(x). g(x) and
comparing it with f(a). g(a).
For example, consider, f(x) = x3 and g(x) = sgn(x).
Here f(x) is continuous at x = 0 and g(x) is
discontinuous at x = 0. But the product function

f(x)g(x) =










0x,x

0x,0
0x,x

3

3

 is continuous at x= 0
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As another example, the product of the
functions

f(x) = 
1sin x 0

x and g(x) x
0 x 0

  
 

is continuous at x = 0 even when f(x) is
continuous at x = 0 and g(x) is discontinuous
at x = 0.
However, the product of the functions f(x) = x
and g(x) = [x] is discontinuous at x = 1.

(iii) f(x)/g(x) is not necessarily discontinuous at
x = a. Here also we need to work on the
function f(x)/g(x) to get the result.

Let f(x) = x(x2 –1) and g(x) = 







01
01

x,x

x,x
.

Here f(x) is continuous at x = 0 and g(x) is
discontinuous at x = 0. We can check that f(x)/
g(x) is continuous at x = 0.

Discuss the continuity of f(x) = [x] + | x – 1 |.

Let us draw the graphs of the functions
y = [x] and y = | x – 1 |

1

O
–1

1 2

y = [x]

y = |x – 1|

Y

X

–1

It is a clear from the figure that f(x) = [x] is discontinuous
at all integral points and g(x) = |x – 1| is continuous for all
x  R. The sum of a discontinuous and a continuous
function is discontinuous. Hence f(x) + g(x) is
discontinuous at all integral points.
3. If f(x) and g(x) both are discontinuous at x = a,

then we have the following results.
(i) The functions  f(x) + g(x) and  f(x) – g(x) are

not necessarily discontinuous at x = a.
However, atmost one of f(x) + g(x) or f(x) –
g(x) can be continuous at x = a. That is, both
of them cannot be continuous simultaneously
at x = a. We have the following reason.

Let us assume that both f(x) + g(x) and  f(x) –
g(x) are continuous. Then the sum of
functions (f(x) + g(x)) + (f(x) – g(x)) = 2f(x)
must be continuous at x = a, which is wrong
as it is given that f(x) is discontinuous at
x = a. Hence our assumption is wrong. So,
both the functions cannot be continuous
simultaneously at x = a.
For example, consider, f(x) = [x] and g(x) = {x}.
Here both f(x) and g(x) are discontinuous at x=0
The sum function  [x] + {x} being equal to x is
continuous at x = 0. The difference function
[x] – {x} however is discontinuous at x = 0.
But this does not mean that one of the
functions f(x) + g(x) or  f(x) – g(x) must be
continuous. We can have both the functions
discontinuous. For example,
if  f(x) = 2[x] and g(x) = {x}, then both the
functions f(x) + g(x) or  f(x) – g(x) are
discontinuous simultaneously at x = 0 .

(ii) f(x). g(x) is not necessarily discontinuous at
x = a. We need to find the result by getting
the limit of the product f(x). g(x) and
comparing it with f(a). g(a).
For example, consider, f(x) = [x] and g(x) = [–x].
Here both f(x) and g(x) are discontinuous at
x = 0 but, the product function  [x].[–x] is
continuous at x = 0.
Further, f(x) = [x] and g(x) = {x} are both
discontinuous at x = 0 and, the product
function  [x].{x} is discontinuous at x = 0.
Hence, we cannot comment in advance, when
both the functions are discontinuous at x = a.

(iii) f(x)/g(x) is not necessarily discontinuous at
x = a. Here also we need to work on the
function f(x)/g(x) to get the result.

Let f(x) =
2x –1, x 0

x +1, x 0

ì ³ï
í
ï <î

 and g(x) =
x +1, x 0
x –1, x 0

ì ³ï
í

<ïî
.

Here both f(x) and g(x) are discontinuous at
x = 0. But we find that f(x)/g(x) is continuous
at x = 0.

If f(x) = [sin(x–1)] – {sin(x–1)} then

comment on continuity of f(x) at x = 
2


+ 1.



2.32  DIFFERENTIAL CALCULUS

f(x) = [sin (x – 1)] – {sin (x – 1)}Let g(x) =
[ sin (x – 1)] + {sin (x – 1}  =  sin (x – 1)

which is obviously continuous at x = 
2


 + 1

Here [sin (x – 1)] and { sin (x – 1)} are both

discontinuous at x = 
2


 + 1.

  Atmost one of f(x) or g(x) can be continuous at x =
2


 + 1.

As g(x) is continuous at x = 
2


 + 1, therefore, f(x) must

be discontinuous.

Continuity of Composite Functions
Theorem A function composed of a finite number
of continuous functions is a continuous function.
It is sufficient to prove this assertion for a composite
function formed by two continuous functions because
after that it can be extended, consecutively, to an
arbitary number of constituent functions.
Theorem If f(x) is continuous at x = a and g(x) is
continuous at x = f(a) then the composite function
(gof)(x) is continuous at x = a.
Proof Let y = g(u), u = f(x) and y = g(f(x)) = F(x)
where f(x) is continuous for x = a and g(u) is continuous
for u = b = f(a). We have to prove that
y = F(x)) is continuous at the point a.
Indeed, let x  a. The continuity of the function

u = f(x) implies that x a
lim
 f(x) = f(a) = b,

that is u  b. The function g(u) being continuous at

the point b. we have u b
lim
  g(u) = g(b).

Now, since u = f(x), we can rewrite the last relation in

the form x a
lim
 g(f(x)) = g(f(b)) or, equivalently,

x a
lim
 F(x) = F(a) which is what we wished to prove.

This theorem is also named as the chain rule for
continuity.

For example, f(x) = sin x is continuous at x = 
2
  and

g(x) = 
2x 1, x 1

x 1, x 1
  


 
 is continuous at x = f(

2
 ) = 1.

Hence the composite function (gof)(x) is continuous

at x =
2
 .

1. Let a function f(x) be continuous at all points in
the interval [a, b], and let its range be the interval
[A, B] and further the function g(x) be continuous
in the interval [A, B], then the composite function
(gof)(x) is continuous in the interval [a, b].

2. If the function f is continuous everywhere and
the function g is continuous everywhere, then
the composition gof is continuous everywhere.

3. All polynomials, trigonometric functions,  inverse
trigonometric functions, exponential and
logarithmic functions are continuous at all points
in their domains.

4. If f(x) is continuous, then | f(x) | is also continuous.

For example, f(x) = 2

xsin x

x 2
  and  g(x) = x are

continuous for all  x. Hence,  the  composite

function (gof)(x) = 2

xsin x

x 2  is also  continuous
for all  x.

Check the continuity of

f(x) = )xsin/1cos(
xsinxxcosx 23 

.

The numerator is continuous for all x. As
far as the denominator is concerned, according to the
theorem on continuity of a composite function,  it is
continuous at points where the function u = 1/sin x is
continuous, since the function cos u is continuous
everywhere.
Hence the denominator is continuous everywhere,
except at the point x = k (k an integer). Besides, we
must exclude the points at which cos (1/sin x) = 0. i.e.
the points at which 1/sinx = (2p + 1) /2 (p  I), or
sin x = 2/[2p + 1)]. Thus, the function f(x) is
continuous everywhere except at the points

x = k and x = (–1)n sin–1 


n
)1p2(

2 ,
where k, p, n  I.

What can you say about the

continuity of the function f(x) = ?x9 2
Because the natural domain of this

function is the closed interval [–3, 3], we will need to
investigate the continuity of f on the open interval
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(–3, 3) and at the two endpoints. If c is any number in

the interval (–3, 3), then  
2

cxcx
x–9lim)x(flim




 )c(fc–9)x–9(lim 22

cx




which proves f is continuous at each number in the
interval (–3, 3). The function f is also continuous at
the endpoints since

2

3x3x
x–9lim)x(flim

–– 
 )3(f0)x–9(lim 2

3x –



;

2

3–x3–x
x–9lim)x(flim

 


)3(–f0)x–9(lim 2

3–x



.

Thus, f is continuous on the closed interval [–3, 3].

 The nth-root function f(x) = n x  is
continuous everywhere if n is odd and it is continuous
for x  0 if n is even.
We may combine this result with the previous theorem.
Then we see that a root of a continuous function is
continuous, wherever it is defined. That is, the
composition

h(x) = n )x(g  = [g(x)]1/n

of f(x) = n x  and the function g(x) is continuous at a
assuming that g(a)  0 if n is even (so that n )a(g  is
defined).
For example, the above theorem tells us that  composite
functions like ,xsin  x , ( x  + 1)3, 3xcos2  ,
are continuous at all points at which the functions are
defined, because polynomials and trigonometric
functions like sine and cosine are continuous at every
point, while root functions are continuous on their
proper domains.

Show that the function

f(x) = 
3/2

2 2x2x

7x











is continuous everywhere.

Note first that the denominator
x2 + 2x + 2 = (x + 1)2 + 1is never zero.

Hence the rational function

r(x) =
2x2x

7x
2 



is defined and continuous everywhere. It then follows
from the continuity of the cube root function that

  f(x) = [r(x)]2/3 = 3 2)]x(r[ is continuous everywhere.

As was mentioned earlier, all the basic elementary
functions are continuous in the intervals where they
are defined  and therefore the theorems proved here
imply that every elementary function is continuous in
those intervals where it is defined.
An elementary function can only be discontinuous at
those points where some of the constituent functions
it is formed of are not defined or where the
denominators of some fractions involved vanish.

For instance, the function y = 2

x

x 4
 is discontinuous

at the points x = ± 2 and continuous at all the other
points.
The function y = x2 tan x is discontinuous at the points

x = (2k + 1)
2
  , k I.

Find the points of discontinuity of

y = 
2uu

1
2 

, where u = 
1x

1


.

The function u = f(x) = 
1x

1


 is

discontinuous at the point x = 1. ...(1)

The function y = g(u) = )1u)(2u(

1

2uu

1
2 




is discontinuous at u = –2 and u = 1.

When u = –2,  
1x

1


 =  –2

 x – 1 = –
2

1
 x = 1/2 ...(2)

When u = 1, 
1x

1


 = 1

 x – 1 = 1  x = 2 ...(3)
Hence, the composite function y = g(f(x)) is

discontinuous at three points x = 
2

1
, 1, 2.

If f(x) = 
x 1

x 1




 and g(x) = 
1

x 2
, then

discuss the continuity of  f(x), g(x) and (fog)(x).

f(x) = 
x 1

x 1




f(x) is a rational function it must be continuous in its
domain. f is not defined at x = 1
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 f is discontinuous at x = 1

g(x) = 
1

x 2
g(x) is also a rational function. It must be continuous
in its domain and it is not defined at x = 2
 g is discontinuous at x = 2
Now fog(x) may be discontinuous at
(i) x = 2 (point of discontinuity of g(x))
(ii) g(x) = 1 (when g(x) = point of discontinuity of

f(x)).

If g(x) = 1 then 
1

x 2
 = 1    x = 3.

 The discontinuity of fog(x) should be checked at
x = 2 and x = 3

At x = 2,  fog (x) = 

1
1

x 2
1

1
x 2







We see that fog (2) is not defined.

x 2
lim


 fog (x) = 
x 2
lim


 

1
1

x 2
1

1
x 2







 = 
x 2
lim


 1 x 2

1 x 2

 
 

 = 1.

 fog (x) is discontinuous at x = 2 and it has a
removable discontinuity at x = 2.
At x = 3, fog (3) is not defined.

x 3
lim


 fog (x) = 

x 3
lim


 

1
1

x 2
1

1
x 2







 = 

x 3
lim


 fog (x) = 

x 3
lim


 

1
1

x 2
1

1
x 2







 = – 

 fog (x) is discontinuous at x = 3 and it has an
infinite irremovable discontinuity there.

Given the function f(x) = 1/(1 – x). Find
the points of discontinuity of the composite function
y = f(f(f(x))).

The point x = 1 is a discontinuity of

the function v = f(x) = 
x1

1


. If x  1, then

u = f(f(x)) = 
)x1/(11

1


 = 
x

1x  .

Hence, the point x = 0 is a discontinuity of the function
u = f(f(x)). If x  0, x  1, then

y = f(f(f(x))) = 
x/)1x(1

1


 = x is continuous

everywhere. Thus, the points of discontinuity of this
composite function are x = 0, x = 1, both of them being
removable.

If f(x) = sgn(2sinx + a) is continuous
for all x, then find the possible values of a.

Since f(x) = sgn(2sinx + a) is continuous
for all x, we should have 2sinx + a  0 for any real x.
 sin x –a/2
 |a/2| > 1
 a < –2 or a > 2.

Continuity of the Inverse of a Continuous
Invertible Function
Theorem If the function y = f(x) is defined,
continuous and strictly monotonic on the interval I,
then there exist the inverse function y = f–1(x) defined,
continuous and also strictly monotonic in the range
of the function y = f(x).
Theorem Assume f is strictly increasing and
continuous on an interval [a, b]. Let c = f(a) and
d = f(b) and let g be the inverse of f. Then

(i) g is strictly increasing on [c, d], and
(ii) g is continuous on [c, d]

There is a coresponding theorem for decreasing
functions. That is, the inverse of a strictly decreasing
continuous function f is strictly decreasing and
continuous.
For example, we prove that the function y = 3 x  is
continuous   x  R, considering it as the inverse of
y = x3.  The function y = x3 is continuous  x  R,  and
its range is y  R. Also, it is strictly increasing and
hence invertible. Hence, its inverse function,

 y = 3 x , x  R, is continuous  x  R.

Continuity of Integrals

Assume f is integrable on [a, x] for every x in [a, b] and

let A(x) = dt)t(f
x

a
 . Then the integral A is continuous at

each point of [a, b]. (At each endpoint we have one-
sided continuity)
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Proof We choose a point c in [a, b]. Now we prove
that A(x)  A(c) as x  c. We have

A(x) – A(c) = 

x

c

f (t)dt
We estimate the size of this integral. Since f is bounded
on [a, b], there is a constant M > 0 such that
 –M(x – c)   A(x) – A(c)  M(x – c).
If x < c, we obtain the same inequalities with x – c
replaced by c – x. Therefore, in either case we can

let x  c and apply the Sandwitch theorem to find
that A(x)  A(c). This proves the theorem. If c is an
endpoint of [a, b], we must let x  c from inside the
interval, so the limits are one-sided.

 If f is continuous on [a, b], then it is
integrable on the interval. Hence, the integral of a
continuous function is continuous. For example,

x

1

sint dt
tò  is continuous in the interval [1, ).

DDDDD
1. Let f(x) = 

1 x 0
1 x 0


 

  and

g(x) = 
1 x 0

1 x 0
 
 

Show that f + g is continuous at x = 0 even though
f and g are both discontinuous there.

2. Will the sum of two functions f(x) + g(x) be
necessarily discontinuous at a given point x0 if :
(i) The function f(x) is continuous and the

function g(x) is discontinuous at x = x0,
(ii) Both functions are discontinuous and the

function at x = x0?
3. Is the product of the two functions f(x) g(x)

necessarily discontinuous at a given point x0 if :
(i) The function f(x) is continuous and the

function  g(x) is discontinuous at this point;

(ii) Both functions f(x) and g(x) are
discontinuous at x = x0?

4. Prove that if the function f(x) is continuous and
non-negative in the interval (a, b), then the function
F(x) = )x(f  is likewise continuous in this interval.

5. Prove that f(x) = 1x7x/1 24   is continuous
everywhere.

6. Suppose that the function f is continuous
everywhere and that the composition f(g(x)) is
continuous at x = a. Does it follow that g(x) is
continuous at a ?

7. Can one assert that the square of a discontinuous
function is also a discontinuous function? Give
an example of a function discontinuous everywhere
whose square is a continuous function.

8. Give an example of a function f such that f is not
continuous but |f| is continuous. Show that f2 can
be continuous when f is not.

DDDDD
9. Let f(x) = 








0xif2

0xifx
 and

g(x) = 







0xif2

0xifx3

Show that f + g is continuous at x = 0 even though
f and g are both disontinuous there.

10. Let f(x)  = x2 and

g(x) =  xcos x 0
0 x 0

 
 

Show that f.g is continuous at x = 0.

11. Let f and g be two functions defined as follows:

f(x) = 
2

|x|x
 for all x, g(x) = 








0xforx

0xforx
2

Find a formula for the composite function
h(x) = f[g(x)]. For what values of x is h continuous?

12. Let f and g be two functions defined as follows:
3

2

1 x , x 0
f(x)

x 1 , x 0

  
 

 
;
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1

3

1
2

(x 1) , x 0
g(x)

(x 1) , x 0


  

  
Comment the continuity of gof(x)

13. Let f and g be two functions defined as follows :

f(x) =
1 if | x | 1
0 if | x | 1

ì £ï
í

>ïî
,  g(x) = 

22 x if | x | 2
2 if | x | 2

ì - £ï
í

>ïî
Find a formula for the composite function
h(x) = f[g(x)]. For what values of x is h continuous?

14. Discuss the continuity of the composite function

h(x) = f(g(x)) where f(x) = )6–x(
1

, g(x) = x2 + 5.

15. If  f(x) = 
x1

1


. Find the points of discontinuity
of the function y = f (f(f(x))).

16. Let  f(x) = 
1 x , 0 x 2
3 x , 2 x 3
  

   
.

Determine  the  form of  g(x) = f(f(x)) and  hence
find the point of discontinuity of g , if any.

17. If  f(x) = – 1 + | x – 1|, 1 x 3    and g(x) = 2 – | x + 1|,
2 x 2   , then discuss the continuity of  f(g(x)).

18. Let  f(x) = 2

x 1, 1 x 0
x , 0 x 1
   

  
 and g(x) = sin x.

Further let h(x) = f ( | g(x) | ) + | f (g(x))|. Discuss the
continuity of h(x) in [–1, 1].

2.5 PROPERTIES OF
FUNCTIONS CONTINUOUS
ON  A  CLOSED INTERVAL

Functions continuous on a closed interval possess
d in the following theorems.

Boundedness Theorem
If a function f(x) is continuous at every point of a closed
interval [a, b], then the function f(x) is bounded on this
interval.
Note that the boundedness of a function on the interval
[a, b] means that there is a number K > 0 such that
|f(x)| < K for all x  [a, b].

0 a b

–K

K

X

Y

Represented in the figure is the graph of a continuous
function f on a closed interval [a, b]. Obviously, there
exists a number K > 0 such that   the graph is located
between the straight lines y = K and y = –K.
Note that if a function is continuous on an open
interval (a, b) or on a half-open interval [a, b) or (a,
b], then it is not necessarily bounded on such an
interval. For instance, the function y = 1/x is continuous
but not bounded in the interval (0, 1]. There is no

contradiction with the theorem since the function in
question is not continuous on a closed interval but only
in a half-open one.
If the continuity condition is not take into account,
then the assertion that the function f(x) is bounded
may not be true. For instance, the function

y = 
1 / x for 0 x 1

0 for x 0

 
 

is defined on the closed interval [0, 1], but is not bounded
on this interval since it is discontinuous at x = 0.

Weierstrass Theorem (Extreme Value Theorem)
If a function is continuous in a closed interval there
exists atleast one point at which the function assumes
the greatest value and atleast one point at which it
assumes the least value on that interval.
If a function f is continuous on a closed interval [a,
b], then there exist its minimum and maximum values
on [a, b], i.e. there exist points  [a, b] such that
f()  f (x)  f() for all x  [a, b]. In other words,

]b,a[x
min
  f(x) = f(), ]b,a[x

max
  f(x) = f().

In other words, if m = min{f(x) : a  x  b} and
M = max{f(x) : a  x  b}, then there are two points ,
  [a, b] such that f() = m and f() = M. Note that
these points  and  need not be unique.
The continuous function y = f(x) represented in Figure 1
attains its minimum on [a, b] at the point x =  and
maximum at the point x = . In this case both points 
and  belong to the interval (a, b).
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The continuous function y = f(x) represented in Figure 2
reaches its minimum on [a, b] at its left end point and
maximum at a certain interior point  of this interval.

Y

X

Figure 1

 

X

Y

Figure 2

b 

The value () and f(), whose existence is affirmed by
the theorem, are respectively the absolute minimum and
absolute maximum of the function on the interval [a, b].
The extreme value theorem guarantees that the
maximum and the minimum exists, but does not tell us
how to find them. The problem of finding them is
discussed in the chapter of maxima – minima.
If the function f(x) is continuous in the open interval
(a, b) or in the half-open interval (a, b], then the
function may not attain its least or greatest value.
Further, if f(x) is a discontinuous function, then the
theorem may not hold true.
To see that continuity is necessary for the extreme
value theorem to be true refer the graph shown below.

Y

X
There is a discontinuity at x = c in the interval. The
function has a minimum value at the left end point
x = a and f  has no maximum value.
Also, the function

f(x) = 
x for 0 x 1,

0 for x 1

 
 

which is continuous on an open interval [0, 1) has no
absolute maximum. As x  1 from the left , f(x)  1,
but f(x) does not attain the value 1. Incidentally, f takes
on its minimum value 0 on the interval [0,1] at two
places, at x = 0 and at x = 1

If we consider the function y = x in the interval 0 < x < 1,
there is no least and no greatest values among them.
There is no extreme left point, since no matter what
point x = x1 we take there will be a point to the left of it,

for instance, the point 1x
2

. Likewise there is no extreme
right point; consequently, there is no least and no
greatest value of the function y = x, 0 < x < 1.
Consider the function f(x) = tan–1x for x  0.

It is obvious that x
lim  tan–1 x = /2. But there is no  x

for which the function tan–1x takes on the value /2,
and it does not attain maximum on x  0. In this case
the conditions of the theorem are not fulfilled : here
the domain of the function [0, ) is unbounded.
If a function f is discontinuous, then it may have both a
maximum and a minimum value, but this is not always true.

For example, the function f(x) = 
x, 0 x 2

3 x, 2 x 4

 
   

has a maximum at x = 2 and a minimum at x = 4, even if
it is discontinuous of x = 2. This can be concluded
from the graph of y = f(x).

Let f(x) = 1/(1–x2) in the open interval
(–1, 1). Show that f does not have a maximum value in
this interval.

For x near 1, f(x) gets arbitrarily large
since the denominator 1–x2 is close to 0. The graph of
f, for x  (–1,1), shows that the function is continuous
throughout the open interval (–1, 1), but there is no
number c in (–1,1) at which f has a maximum value.
However, f has a minimum value, f(0) = 1.

Sign Preserving Property of Continuous
Functions

If f is continuous at c and f(c)  0, then there exists an
interval (c – , c + ) around c such that f(x) has the
sign of f(c) for every value of x in this interval.
Its truth is obvious if we understand that a continuous
function does not undergo sudden changes so that if
f(c) is positive for the value c of x and also f is
continuous at c, it cannot suddenly become negative
or zero and must, therefore, remain positive for values
of x in a certain neighbourhood of c.

If 
x c
lim


 f(x) = b and b > 0, then there exists a deleted
neighbourhood D of c such that f(x) > 0 for every x in D.
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Similarly, if b < 0 there exists a D such that f(x) < 0 for
every x in D.
Proof Suppose f(c) > 0. By continuity, for every
 > 0 there is a  > 0 such that

f(c) –  < f(x) < f(c) +   ...(1)
whenever c –  < x < c + .
If we take the  corresponding to  = f(c)/2
(this  is positive), then (1) becomes

)c(f
2

3
)x(f)c(f

2

1
 , c –  < x < c + .

Here f(x) > 0 for x near c because f(c) > 0.
Therefore f(x) > 0 in this interval , and hence f(x) and f(c)
have the same sign. If f(c) < 0, we take the  corresponding

to  = )c(f
2

1
 and arrive at the same conclusion.

Corollary. If f(x) is continuous at x = c, and f(x)
vanishes for values of x as near as we please, or
assumes, for values of x as near to c as we please, both
positive and negative values, then f(c) = 0.
This is an obvious corollary to sign preserving
property. If f(c) is not zero, it must be positive or
negative; and if it were, for example, positive, f(x) would
be positive for all values of x sufficiently near to c,
which contradicts the hypotheses of the theorem.

 If there is one-sided continuity at c, then
there is a corresponding one-sided interval [c, c + ) or
(c – , c] in which f has the same sign as f(c).

Bolzano's Theorem
If a function f is continuous on a closed interval [a, b]
and the numbers f(a) and f(b) are different from zero
and have opposite signs, then there is atleast one point
c on the open interval (a, b) such that f(c) = 0.

0 X

Y

a bc

The function whose graph is depicted in the above
figure satisfies the conditions of Bolzano's theorem. It

is continuous on [a, b] and f(a) < 0, f (b) > 0.
Geometrically, it is obvious that the graph must intersect
the x-axis atleast at one point c  (a, b). This is just
what is stated by the theorem.
In other words, if f is continuous in [a, b] and f(a) and
f(b) have opposite signs, then there is atleast one
value of x for which f(x) vanishes in the interval (a, b).
Proof To  fix the ideas, suppose that f(a) < 0 and
f(b) > 0. Since f(x) is continuous, it will be negative in the
neighbourhood of a and positive in the neighbourhood
of b. The set of values of x between a and b which make
f(x) positive is bounded below by a, and hence possesses
an exact lower bound k: clearly a < k < b.
From the definition of the lower bound, the values of
f(x) must be negative or zero in a  x < k. Since f(x) is
continuous when x = k,

).k(f)x(flim
_kx




Hence f(k) is also negative or zero. We shall show that
f(k) cannot be negative; for if f(k)= – c, where c is
positive, then there exists a positive number  such that

|f(x) – f(k)| < c when |x – k| ,
since f(x) is continuous when x = k. The function f(x)
would when be negative for whose values of x in (a, b)
which lie between k and k + , which contradicts the
fact that k is the lower bound of the set of values of x
between a and b which make f(x) positive. It follows
that f(k) = 0, and the theorem is therefore proved.
In the following figure, f (a) and f (b) are of opposite
signs but f (x) has no root in (a, b) as f is discontinuous.

Hence, if a function is discontinuous in the interval
[a, b] and f(a) and f(b) have opposite signs then f(x)
may or maynot have a root in (a, b).

The equation x3– x – 2 = 0 may have
a solution somewhere between x = 1 and x = 2. Apply
the Bolzano's theorem to show that this is true.
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The function f(x) = x3– x – 2 is continuous
on [1, 2] because it is a polynomial. f(1) = –2 and
f(2) = 4. Since, they have opposite signs, Bolzano's
theorem implies that the function vanishes at some
point in (1, 2). In particular, there exists atleast one c
in (1, 2) such that f(c) = c3  – c – 2 = 0.
So x = c is a solution of the equation x3 – x – 2 = 0 which
lies in (1, 2).

What can be said about the roots
of f(x) = cosx – 2x2 in the interval 0  x  1 ?

f(x) = cosx – 2x2 in the interval 0  x  1.
Since f(x) is a difference of the two continuous
functions, it is continuous. We find values of f at
different values of x as shown in the table.

x f(x)
0

0.2
0.4
0.6
0.8
1.0

1.00
0.90
0.60
0.11

–0.58
–1.46

TABLE

X0.2 0.4 0.6 0.8 1

–1

1

Roots occur where the graph of 
a function crosses the x-axis

Y

We conclude that f(x) has atleast one root in the interval
0.6 < x < 0.8, since f(x) changes sign from positive to
negative on that interval. The graph of  f(x) suggests that
there is only one root in the interval 0  x  1, but we
cannot find the root from the graph or the table of values.

Given that a > b > c > d then prove
that the equation (x – a) (x – c) + 2(x – b) (x – d) = 0 will
have two real and distinct roots.

(x –  a) (x – c) + 2 (x – b) (x – d) = 0
Let f(x) = (x – a) (x – c) + 2 (x – b) (x – d)

f(a) = (a – a) (a – c) + 2 (a – b) (a – d) = + ve
f(b) = (b – a) (b – c) + 0  = –ve
f(c) = 0 + 2 (c – b) (c – d)  = –ve
f(d) = (d – a) (d – c) + 0 = +ve

Hence (x – a) (x – c) + 2(x – b) (x – d) = 0 has atleast one
real root in (d, c) and atleast one real root in (b, a). Since,
a quadratic equation can have atmost two real roots,
exactly one real root lies in each of the two intervals.
Thus the roots are real and distinct.

Show that e–x sin x = ln x has atleast
one solution on the interval [1, 2].

Notice that the function
f(x) = e–x sin x – ln x is continuous on [1, 2].
We find that

f(1) = e–1 sin 1 – ln 1  0.31 > 0 and
f(2) = e–2 sin 2 – ln 2 –0.57 < 0

Therefore, by Bolzano theorem there is atleast one
number c on (1, 2) for whieh f(c) = 0, and it follows
that e–c sin c = ln c.

Given a function on the interval [–2, 2]

f(x) = 








2x0if)2x(–

,0x2–if2x
2

2

is there a point on this closed interval at which f(x) = 0?
At the endpoints of the interval [–2,  2]

the given function has different signs :
f(–2) = 6; f(2) = – 6.

But it is easy to notice that it does not become zero at
any point of the interval [–2,  2]. Indeed, x2 + 2 > 0 and
– (x2 + 2) < 0 at any x; this is due to the fact that f(x) has
a discontinuity at the point x = 0.

Let f be a continuous function
defined from [0, 1] to [0, 1] with range [0, 1]. Show that
is some 'c' in [0, 1] such that f (c) = 1 – c.

Consider  g (x) = f (x) – 1 + x
g (0) = f (0) – 1   0 (as f (0)  1)
g (1) = f (1)  0 (as f(1)  [0, 1] )

There are three cases:
Case I: g(0) = 0
This happens when  f(0) = 1. In such a case c = 0,
which lies in [0, 1].
Case II: g(1) = 0
This happens when  f(1) = 0. In such a case c = 1,
which lies in [0, 1].
Case III:  g (0) and g (1) are of opposite signs
By Bolzano's theorem there exists atleast one c  (0, 1)
such that  g (c) = 0.
g (c) = f (c) – 1 + c = 0  f (c) = 1 – c.
Combining the three cases, there exists some c in [0, 1]
such that f (c) = 1 – c.

Let f : [0, 2]  R be continuous
and f(0) = f (2). Prove that there exists x1 and x2 in
(0, 2) such that x2 – x1 = 1 and f (x2) = f (x1)
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Consider  the continuous function g on
[0, 2] defined as g (x) = f (x + 1) – f (x)        (x2 = x1 + 1)
Now,g (0) = f (1) – f (0) = f (1) – f (2) ...(1)

g (1) = f (2) – f (1) = f (2) – f (1) ...(2)
Thus, g (0) and g (1) are of opposite signs.
Hence by Bolzano's theorem there exists some
c  (0, 1) where g (c) = 0,
i.e. f (c + 1) = f (c)         {c + 1  (1, 2)  as  c  (0, 1)}
Putting c = x1  ;  c + 1 = x2,  obviously x1, x2  (0, 2)
we have f (x2) = f (x1)  where x2 – x1 = 1.

Prove that the function
f (x) = a 1x   + b 1x2   – 1x3x2 2 

where a + 2b = 2 and a, b  R always has a root  in
(1, 5)   b  R.

There are three cases:
Case I: Let b > 0, then f(1) = b > 0
and f(5) = 2a + 3b – 6 = 2(a + 2b) – b – 6

= 4 – b – 6 = – (2 + b) < 0
Hence by Bolzano's theorem, there exists some
c  (1, 5) such that f (c) = 0.
Case iI:If   b = 0 then a = 2.

f(x) = 1x2   – 1x3x2 2   = 0
 4(x – 1) = 2x2 – 3x + 1 = (2x – 1) (x – 1)

 (x – 1) (2x – 5) = 0     x = 
2
5

Hence f (x) = 0  if  x = 2
5

 which lies in (1, 5).

Case III: If  b < 0 ,   f(1) = b < 0 and
f(2) = a + b 3  – 3

= (a + 2b) +  23  b – 3
= (2 – 3 ) – (2 – 3 ) b

= (2 – 3 ) (1 – b) > 0  (as  b < 0)
Thus, f(1) as f(2) have opposite signs
Hence there exists  some c  (1, 2)  (1, 5) for which
f(c) = 0.

Isolation of roots
A real number x1 is said to be a real root of the equation
f(x) = 0 if f(x1) = 0. We say that a real root of an equation
has been isolated if we exhibit an interval [a, b]
containing this root.
If f is a continuous function in an interval I and
f(a) f(b) < 0 for some a, b  I, then by Bolzano’s theorem
there is a point c between a and b for which f(c) = 0.
This is often used to locate the roots of equations of
the form f(x) = 0.
For example, consider the equation x3 + x – 1 = 0.
Let f(x) x3 + x – 1.
Note that f(0) = –1 whereas f(1) = 1. This shows that
the above equation has a root between 0 and 1.
Now we try with 0.5, f(0.5) = –0.375. So there must be a
root of the equation between 1 and 0.5. We again try
0.75, f(0.75) > 0, which means that the root is between
0.5 and 0.75.
So we may try 0.625, f(0.625) < 0. So the root is between
0.75 and 0.625.
Now if we take the approximate root to be .6875, then
we are away from the exact root by atmost a distance
of .0625. If we continue this process further, we shall
get better and better approximations to the root of the
equation.

EEEEE
1. The boundedness theorem tells us that every

continuous real-function on the closed interval
[0, 1] is bounded and attains its bounds. For each
of the following intervals I give an example of a
continuous function f from I to R which is
unbounded, and an example of a function g from I
to R which is continuous and bounded on I, but
such that g does not have a maximum value on I.
(i) I = [0, 1); (ii) I = (1, ) ; (iii) I = [0, ).

2. Prove that the equations have a solution in the
given intervals

(i) x4 + 2x – 1 = 0 on [0, 1] ;
(ii) x5 – 5x3+ 3 = 0 on [–3, –2]

3. Prove that the equation sinx – x cosx = 0 has a root

between  and 
2

3
.

4. Let f(x) = tanx. Although f(/4) = 1 and f(3/4) =
–1, there is no x in the interval (/4, 3/4) such
that f(x) = 0. Explain why this does not contradict
Bolzano’s theorem.

5. With the aid of Bolzano’s theorem, isolate the real
roots of each of the following equations (each
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has four real roots).
(i) 2x4 – 14x2 + 14x – 1 = 0
(ii) x4 + 4x3 + x2 – 6x + 2 = 0

6. Suppose that f is continuous on the interval [0, 1],
that f(0) = 2, and that f has no zeros in the interval.
Prove that f(x) > 0 for all x in [0, 1].

EEEEE
7. A function f from R to R is said to be periodic, and

a real number T > 0 is said to be a period of f it,
for all x R, f(x + T) = f(x). Suppose that f is a
continuous function from R to R and that f is
periodic. Prove that f is bounded.

8. Does the function 2x – x3 + x5 have (a) a maximum
value for x in [–3, 10] ? (b) a minimum value for x
in [–3, 10] ?

9. Prove that the function

f(x) = 
x 1, –1 x 0,
–x , 0 x 1
  

  
is discontinuous at x = 0 and still has the maximum
and minimum value on [–1, 1].

10. Show that there is a number x between /2 and 
such that tanx = –x.

11. Show that the given equation has atleast one
solution on the indicated interval.

(i) 3 x  = x2 + 2x – 1 on [0, 1]

(ii)
1x

1


 = x2 – x – 1 on [1, 2]

(iii) 3 8x   + 9x2/3 = 29 on [0, 8]
(iv) cos x = x2 – 1 on [0, ]

12. Prove that the equation tan x = x  has infinite
number of real roots.

13. Let 
1x

xcosx
)x(

n2

2n2







, show that (0) and (2)

differ in sign but (x) does not vanish in  [0, 2].
14. (i) Prove that the only polynomial function (with

real coefficient) p such that, for all x > 0,
p(x)/x2 [2, 3] are those of the form p(x) =
Ax2 for some constant A [2, 3].

(ii) Give an example of a continuous function f
from (0, ) to R which is not a polynomial but

such that, for all x > 0, 3
x

)x(f
2

2
 .

2.6 INTERMEDIATE VALUE
THEOREM (I.V.T.)

Theorem  If f is continuous on the closed interval
[a, b] and k is any number between f(a) and f(b), then
there is atleast one number c in [a, b] such that f(c) = k.
In other words, a continuous function defined on
[a, b] takes on all values between f(a) and f(b). Pictorially,
it asserts that a horizontal line of height k must meet the
graph of f atleast once if k is between f(a) and f(b), as
shown in the figure. That is, when you move a pencil
along the graph of a continuous function from one
height to another, the pencil passes through all
intermediate heights. This is a way of saying that the
graph has no gaps or jumps, suggesting that the idea of
being able to trace such a graph without lifting the pen
from the paper is accurate. The following graphs of
functions continuous in a closed interval illustrate the
theorem.

Y

X

k

c

Y

X

k

c1 c2 c3
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a b X

Y
f(a)

k

f(b)

Any one of these
three numbers
serves as c.

Note that continuity through the interval [a, b] is
essential for the validity of this theorem. This is
illustrated by the following figure

Y

X

k

Even though the theorem guarantees the existence of c,
it does not tell how to find it. Such theorems are called
existence theorems. To find c, we must solve the
equation, namely f(c) = k.
Proof Let us define a new function g(x) = f(x) – k, where
k is a constant number lying between f(a) and f(b). Since
f is a continuous function on [a, b], so is the function g.
Without loss of generality let us assume that f(a) < k <
f(b). Now g(a) = f(a) – k < 0 and g(b) = f(b) – k  > 0. The
function g, obviously, attains values of opposite signs
at the end points of the interval [a, b]. Therefore, by
Bolzano theorem , there is a point c lying inside (a, b)
such that g(c) = 0 or f(c) – k = 0, that is f(c) = k. This is
what we wished to prove.
Since k is any value between f(a) and f(b), it follows
that f takes all values between f(a) and f(b) atleast
once. In other words, a continuous function cannot
pass from one value to another without assuming once
(atleast) every intermediate value.
Alternative proof: For definiteness, let f(a) < 0 and
f(b) > 0. Divide the interval [a, b] into n equal parts and
consider the values of the function with their proper
sign at the points of division, say x1, x2, .... , xn–1. Let
xp+1 be the first of these points for which f(x) is positive.
Then at x = xp, the function is either negative or zero. If
it is zero, the theorem is at once established. If not, we
rename the interval [xp, xp+1] as [a1, b1].

Divide it into n equal parts and consider the values of
f(x) at the points of division again. Suppose [a2, b2] is
the first of the new sub-intervals such that f(b2) > 0
and f(a2) 0.
We take f(a2)  0, for otherwise the theorem is
established. Continuing this process indefinitely, we
shall get a sequence of intervals
[a1, b1], [a2, b2], [a3, b3], .....
such that [a1, b1) [a2, b2] [a3, b3] .....
Also bk – ak = (b – a) / nk 0 as k .
This sequence of intervals will therefore define a
limiting point x0. We will now show that f(x0) = 0. Since
f is continuous at x = x0, we have |f(x) – f(x0)| < for all x
in the interval (x0 – , x0 + ). Now we can choose m so
large that the interval [am, bm] lies within
(x0 – , x0 + ), such that f(am) < 0 and f(bm) > 0. Also by
the sign preserving property if f(x0) 0, f(x) must have
the same sign as f(x0) in the interval (x0 – , x0 + ).
Hence f(am) and f(bm) cannot differ in sign unless f(x0)
is zero, thus establishing the theorem.
As a simple example of this theorem, consider a person’s
height. Suppose that a girl is 5 feet tall on her thirteenth
birthday and 5 feet 7 inches tall on her fourteenth
birthday. Then, for any height h between 5 feet and
7 inches, there must have been a time t when her height
was exactly h. This seems reasonable because human
growth is continuous and a person’s height does not
abruptly change from one value to another.

Show that the function
f(x) = x – 1 – cos x, x  [1, 2] takes on the value 1/2.

The function f(x) = x – 1– cos x, x  [1,
2] is continuous everywhere in the given interval.
Also, we have f(1) = –1 and f(2) = 1.
Since –1 < 1/2 < 1, hence by I.V.T. there exists atleast
one point x = c in [1, 2] such that f(c) = 1/2.

Does the function f(x) = x3/4 – sin x + 3

take on the value 
3
12  within the interval [–2, 2]?

The function f(x) = x3/4 – sin x + 3 is
continuous within the interval [–2, 2]. Furthermore, at
the end points of this interval it attains the values
f(–2) = 1; f(2) = 5.

Since 1 < 
3
12  < 5, then, by I.V.T. within the interval [–2, 2]

there exists at least  one point x such that f(x) = 
3
12 .
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Show that the function
f ( x )  =  ( x – a ) 2( x – b ) 2 + x takes the value 

2

ba 
 for

some value of x  [a, b].
f is continuous in [a, b] and f(a) = a , f(b) = b.

We know that the average value of a and b

i.e. 
2

ba 
  [a, b].

By Intermediate Value Theorem, there exists atleast

one c  (a, b) such that f(c) = 
2

ba 
.

Use Intermediate Value Theorem to
show that the equation 2x3 + x2– x + 1 = 5 has a solution
in the interval [1, 2].

Let P(x) = 2x3 + x2 – x + 1. Then
P(1) = 2 . 13 + 12 – 1 + 1 = 3
P(2) = 2 . 23 + 22 – 2 + 1 = 19

Since P is continuous and 5 is between P(1) = 3 and
P(2) = 19, we may apply the Intermediate Value Theorem
to P in the case a = 1, b = 2, and k = 5. Thus there is
atleast one number c between 1 and 2 such that
P(c) = 6. This completes the answer.
To get a more accurate estimate for a number c such
that P(c) = 5, we can find a shorter interval for which
the Intermediate Value Theorem can be applied. For
instance, P(1.2)  4.7 and P(1.3)  5.8. By the
intermediate value theorem, there is a number c in
[1.2, 1.3] such that P(c) = 5.

 The Intermediate Value Theorem
guarantees the existence of atleast one number c in the
closed interval [a, b]. There may, of course, be more
than one number c such that f(c) = k, as shown in
Figure 1. A function that is not continuous does not
necessarily possess the intermediate value property. For
example, the graph of the function shown in Figure 2
jumps over the horizontal line given by y = k and for this
function there is no value of c in [a, b] such that f(c) = k.

f(a)

k

f(b)

Y

c1 c2 c3a b

(Fig. 1)
f is continuous on [a, b]. 
(For k, there exist 3 c’s.)

X  

f(a)

k

f(b)

a b
(Fig. 2)

f is not continuous on [a, b]. 
(For k, there are no c’s.)

X

Y

)x(f

1–1

–1

1

2 (1, 2)

(c, 0)

(0, –1)

1x2x3 -+=

f is continuous on [0, 1] with f(0) < 0 and f(1) > 0.
(Fig. 3)

Y

X

The converse of I.V.T. is however not true. Consider,
for example, the function f defined as follows :

f(x) = sin(1/x), x 0 and f(0) = 0.
In the interval [–2/, 2/], this function takes all values
between f(–2/) and f(2/), that is, between –1 and 1
and infinite number of times as x varies from –2/ to
 2/but the function is not continuous in this interval,
being discontinuous at x = 0.

Let

f(x) = 


5x2x1
2x02x

0x2x2x3
3

2





Show that f(x) attains all intermediate values between
f(–2) and f(5) even if f is discontinuous in the interval.

This is self evident from the graph of
the function shown below. Howevever, this could not
be concluded from I.V.T. since f(x) is discontinuous
at x = 0 and x = 2.

X

Y
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Corollary. The I.V.T can also be reformulated in the
following way : a function continuous on a closed
interval [a, b] assumes all the intermediate values lying
between its least and greatest values on [a, b] (which
exist by virtue of Extreme Value Theorem).
In other words, let f be continuous on [a, b] an let
k [m, M] where m = absolute minimum value of f and
M = absolute maximum value of f on [a, b]. Then there
exists c [a, b] such that f(c) = k.
Proof By extreme value theorem, there exist
x1, x2 [a, b] such that m = f(x1) and M = f(x2). If x1 = x2,
then f is constant on [a, b] and the result follows. Let
x1 < x2. Since, f is continuous on [x1, x2] [a, b], by
intermediate value theorem there exists
c [x1, x2] [a, b] such that f(c) = k.

Y M

m
0 a x1 x2 b X

k

c

Similarly the result can be proved when x1 > x2.

 A continuous function whose domain
is closed must have a range in a closed interval but
it is not necessary that if the domain is open then
range is also open (range can be closed).
Theorem Let f be a continuous strictly increasing
function on a closed interval [a, b] and let  = f(a),
= f(b). Then  (i) the range of f for the closed interval
[a, b] is the closed interval [], (ii) there exists a
function x = g(y), the inverse of f, which is one-valued,
strictly increasing and continuous on [].
For example, on the closed interval [–/2, /2] the
function y = sin x is continuous and strictly increasing;
it has a continuous inverse which is, as we know,
designated as

x = sin–1y (–1  y  1).
A strictly decreasing function f(x), continuous on
[a, b] has an inverse, which is a strictly decreasing
continuous function on [] where  = f(a),  = f(b).
Theorem Let a strictly increasing function y = f(x) map
the closed interval [a, b] onto the closed interval [],
i.e. f([a, b]) = []. Then f is continuous on [a, b].

Proof Let us be given an arbitrary point x0 belonging
for the time being to the open interval (a, b). By virtue of
the fact that f is strictly increasing, the corresponding
point y0 = f (x0) will belong to the interval () ( < y0
< ).
Let us take  > 0 so small that  < y0 –  < y0 < y0 +  <.
By the hypothesis, there exist points x1, x2 (a, b),
(x1 < x0 < x2) such that y0 –  = f(x1),  y0  +  = f(x2).
The interval (x1, x2) can be regarded as a
neighbourhood of the point x0 (x0  (x1, x2)).
Since the function f increases, for x  (x1, x2) we shall
have y0 –  < f(x) < y0 +  or |f(x) – y0| < , i.e.
| f(x) – f(x0) | < , and we have proved the continuity of
the function f at the point x0.
If x0 = a or x0 = b, then we prove the one-sided continuity
of the function f in a similar way.
Let f(x) be a function defined and bounded in the
interval [a, b], then, if M and m are the bounds of f(x),
the number M – m is called the span or oscillation of
the function f(x) in the interval.
Theorem A continuous function attains its bounds.
If f(x) is continuous in [a, b] and M and m are its
maximum and minimum values, there are atleast two
points x1 and x2 in (a, b) such that

f(x1) = M, f(x2) = m.
Proof Suppose that M is not attained; then M – f(x)
does not vanish at any point of [a, b]. Hence

)x(f–M

1
is a continuous function, and therefore

bounded. If G > 0 be its upper bound, we have

,G
)x(f–M

1 

So that M – f(x)  ,
G
1

that is, f(x)  M – 
1

G
but this contradicts the fact that M is the maximum
value of f(x) in (a, b). Hence M must be attained. Similarly
it may be proved that m is attained.
Consider the following examples:
(i) If f(x) = 1/x except when x = 0 and f(0) = 0 , then f(x)

has neither an upper nor a lower bound in any
interval which includes x = 0 in  its interior, such
as the interval (–1, 1).

(ii) If f(x) = 1/x2 except when x = 0, and f(0) = 0, then



CONTINUITY OF FUNCTIONS  2.45

f(x) has the lower bound 0, but no upper bound, in
the interval (–1, 1).

(iii) Let f(x) = sin(1/x) except when x = 0 and f(0) = 0,
then f(x) is discontinuous for x = 0. In any interval
(–, ) the lower bound is –1 and the upper bound
1 and each of these values is assumed by f(x) an
infinity of times.

(iv) Let f(x) = x – [x]. This function is discontinous for
all integral values of x. In the interval (0, 1) its
lower bound in 0 and its upper bound 1. It is
equal to 0. when x = 0 or x = 1, but it is never equal
to 1. Thus f(x) never assumes a value equal to its
upper bound.

(v) Let f(x) = 0 when x is irrational, and f(x) = q when x
is a rational fraction p/q.  Then f(x) has the lower
bound 0, but no upper bound, in any interval (a, b).
But if f(x) = (–1)p q when x = p/q then f(x) has
neither an upper nor a lower bound in any interval.

Corollary. If f(x) is continuous in the interval
[a, b], then (a, b) can be subdivided into a finite number
of sub-intervals in each of which the span or oscillation
of f(x) is less than any given .

Existence of Solutions of Equations
The Intermediate Value Theorem  can be often used to
locate the zeros of a function (i.e.solutions of equations
written in the form f(x) = 0) that is continuous on a
closed interval. Specifically, if f is continuous on [a, b]
and f(a) and f(b) differ in sign, then the Intermediate
Value Theorem guarantees the existence of atleast one
zero of f in the open interval (a, b).
Let f(x) = x2 – 2 = 0
f(1) = –1 < 0, whereas f(2) = 2 > 0
We note that the function f is continuous on [1, 2] and
that k = 0 is an intermediate value of f on the interval
[1, 2]. Therefore, it follows from I.V.T. that f(c) = c2 – 2 =
0 for some number c in (1, 2).
i.e.    c2 = 2
This number c is the desired square root of 2. Thus it is
the intermediate value property of continuous
functions that guarantees the existence  of the number 2 .
Consider another example. Prove that the equation
x – cos x = 0 possesses a root in the interval (0, ).
The function f(x) = x – cos x is continuous on the
closed interval [0, ] and assumes f(0) = –1, and

f() =  + 1 values having opposite signs at its end
points. Since – 1 < 0 <   + 1, by I.V.T.  f(x) assumes the
value 0 at some x between 0 and   Thus, the equation
x – cos x = 0 possesses a root in the interval (0, ).

Show that the equation x5 –2x2 + x +
11= 0 has atleast one real root.

For x large and positive the polynomial
P(x) = x5 –2x2 + x + 11 is positive
(since limx P(x) =  ).
Thus, there is a number b such that P(b) > 0. Similarly,
for x negative and of large absolute value P(x) is
negative (since x

lim
 P(x) =  ). Let us now select a

number a such that P(a) < 0.
The number 0 is between P(a) and P(b). Since P is
continuous on the interval [a, b]. There is a number c
in [a, b] such that P(c) = 0. This number c is a real
solution to the equation x5 – 2x2 + x + 11 = 0.
Note that the argument in this example applies to any
polynomial of odd degree.

 In both Bolzano’s theorem and the
intermediate value theorem, it is assumed that f is
continuous at each point of [a, b], including the
endpoints a and b. To understand why continuity at
both endpoints is necessary, we refer to the curve in
the figure below.

a b0

Y

X

Here f is continuous everywhere in (a, b], excluding
the end point a. Although f(a) is negative and f(b) is
positive, there is no x in (a, b) for which f(x) = 0.

If n is a positive integer and if a > 0,
then prove that there is exactly one positive b such
that bn = a.

Choose c > 1 such that 0 < a < c, and
consider the function f defined on the interval [0, c] by
the equation f(x) = xn. This function is continuous on
[0, c], and at the end points we have f(0) = 0, f(c) = cn.
Since 0 < a < c < cn, the given number a lies between
the function values f(0) and f(c). Therefore, by the
Intermediate Value Theorem, we have f(x) = a for some
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x in (0, c) say for x = b. This proves the existence of
atleast one positive b such that bn = a. There cannot
be more than one such b because f is strictly increasing
on [0, c]. This completes the proof.

Prove that the equation

x – 5  = 1
x + 3

 has atleast one real root.

Let f(x) = x - 5  – 1
x + 3

The function is continuous on [5, 6].

Also f (5) = 0 – 1
5 3  = – 1

8
 < 0

f (6) = 1 – 1
9

 = 8
9

 > 0
Hence by intermediate value theorem there exists
atleast one value of c  (5, 6) for which f (c) = 0

5 6

8/9

–1/8

Y

X

 c 5  – 1
c 3  = 0

Thus, c is root of the equation 5x   = 
3x

1


where c  (5, 6).

Let f : R  R be a continuous onto

function satisfying f(x) + f(– x) = 0, x R  .
If f(–3) = 2 and  f(5) = 4 in [– 5, 5], then prove that the
equation f(x) = 0 has atleast three real roots.

f(x) + f(– x) = 0   f(x) is an odd function.
Since points (– 3, 2) and (5, 4) lie on the curve, points
(3, – 2) and (– 5, – 4) will also lie on the curve.
For minimum number of roots, the graph of  a
continuous function f (x) can be drawn as follows.

Y

X

From the above graph of f(x), it is clear that equation
f(x) = 0 has atleast three real roots.

Using Intermediate Value Theorem,
prove that there exists a number x such that

x200 + 
xsin1

1
2

 = 200.

Let f(x) = x200 + (1 + sin2x)–1.
f is continuous and f(0) = 1 < 200 and f(2) > 2200, which
is much greater than 200. Hence, from the Intermediate
Value Theorem there exists a number c in (0, 2) such
that f(c) = 200.

Let f : R  R satisfy
f(x) – f(y) = ex – y – 1   x, y  R.

Prove that f is a continuous function. Also prove that
the function f(x) has atleast one zero if f(0) 1.

h 0
lim
  f(x + h) – f(x) = h 0

lim
 (ex + h – x – 1) = 0

Hence f is continuous everywhere.
Putting y = 0, we have f(x) = f(0) + ex – 1.

Also x
lim
  f(x) =   and x

lim
  f(x) = f(0) – 1 < 0

Since f(x) is positive for large positive x and negative
of large negative x, by Intermediate Value Theorem
f(x) = 0 has atleast one root.

If f(x) be a continuous function in
[0, 2] and f(0) = f(2) then prove that there exists
point c  (0, ) such that f(c) = f(c + ).

Let g(x) = f(x) – f(x + ) ....(1)
at x = ; g() = f() – f(2) ....(2)
at x = 0, g(0) = f(0) – f() ...(3)

Adding (2) and (3), g(0) + g() = f(0) – f(2)
 g(0) + g() = 0  [given f(0) = f(2)]
 g(0) = –g()
 g(0) and g() are opposite in sign.
 There exists a point c between 0 and  such
that g(c) = 0.
From (1) putting x = c,  g(c) = f(c) – f(c + ) = 0
Hence, f(c) = f(c + ).

Suppose that f is a continuous
function of [0, 1] and that f(0) = f(1). Let n be a positive
integer. Prove that there is some number x [0, 1]
such that f(x) = f(x + 1/n). [Universal Chord Theorem]
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Consider g(x) = f(x) – f(x + 1/n), which is
clearly continuous. If g is never zero in [0, 1] then g must
be either strictly positive or strictly negative. But then

0 = f(0) – f(1) = 















n

1
f)0(f  + 























n

2
f

n

1
f

+ 






















n

3
f

n

2
f  + ... + 





















 

n

n
f

n

1n
f .

The sum of each parenthesis on the right is strictly
positive or strictly negative and hence never 0, a
contradiction.

A function f is continuous in the
interval [0,1] and assumes only rational values in the entire

interval. If f(
2

1
) = 

2

1
, prove that f(x) = 

2

1
 everywhere.

Suppose, if possible, that there exists a

point c  [0,1] such that f(c)  
2

1
. It is obvious that

c  
2

1
. By the law of trichotomy, either c < 

2

1
 or 

2

1
 < c.

Without loss of generality, let us assume that c < 
2

1
.

The function f is continuous in [c, 
2

1
].   and therefore

by I.V.T. it must every value lying between f(c) and

f 







2

1
. But this is not possible, because f(c) and f 








2

1

are two distinct rational numbers between which there
lie infinitely many irrational numbers and f(x) does not
take any irrational value. The contradiction shows that
there does not exist any c  [0, 1] such that f(c) is

different from 
2

1
. Hence f(x) = 

2

1
 everywhere.

Let f and g be continuous functions
on an interval I, let f(x)  0 for any x  I and let (f(x))2

= (g(x))2 for all x  I. Prove that either
f(x) = g(x) for all x I or f(x) = –g(x) for all x  I.

Suppose, if possible, that there exist x1

 I and x2  I, such that f(x1) = g(x1) and f(x2) = –g(x2).
Since f is continuous on I and f(x)  0 anywhere on I,
therefore f(x1) and f(x2) must be of the same sign.
Consequently, g(x1) and g(x2) must be of opposite signs.
Now g is continuous on I and g(x1), g(x2) are of opposite

signs. Therefore, by Intermediate Value Theorem, there
exists x0 lying between x1 and x2, such that g(x0) = 0.
Combining this with (f(x))2 = (g(x))2 for all x  I, we have
f(x0) = 0, wheich is not possible.
Therefore either f(x) = g(x) for all x  I or
f(x) = –g(x) for all x  I.

Let f be a continuous function
defined over the real numbers that satisfies the Cauchy
functional equation f(x + y) = f(x) + f(y),  x, y  R,
Then prove that f is linear, that is, there is a constant c
such that f(x) = cx.

We first prove the assertion for positive
integers n using induction. We then extend our result
to negative integers. Then we extend the result to
reciprocals of integers and after that to rational
numbers. Finally we extend the result to all real numbers.
We prove by induction that for integer n  0, f(nx) =
nf(x). Using the functional equation,

f(0 . x) = f(0 . x + 0 . x) = f(0 . x) + f(0 . x)
 f(0 . x) = 0 f(x),
and the assertion follows for n = 0. Assume n  1 is an
integer and that f((n – 1)x) = (n – 1)f(x).
Then
f(nx) = f((n – 1)x + x) = f((n – 1)x) + f(x)

  = (n – 1) f(x) + f(x) = nf(x),
proving the assertion for all strictly positive integers.
Let m < 0 be an integer. Then –m > 0 is a strictly positive
integer, for which the result proved above holds, and
thus, f(–mx) = –mf(x). Now.
0 = f(0) 0 = f(mx + (–mx)) = f(mx) +  f(–mx)
 f(mx) = –f(–mx) = –(mf(x)) = mf(x),
and the assertion follows for negative integers.
We have thus proved the theorem for all integers.

Assume now that x = 
b

a
, with a  I and b  I–{0}.

Then f(a) = f(a . 1) = af(1) and

f(a) = f 







b

a
b  = bf 








b

a
 by the result we proved for

integers and hence

af(1) = bf 







b

a
   f 








b

a
 = f(1) 








b

a
.

We have established that for all rational numbers
x  Q, f(x) = xf(1).
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We have not used the fact that the function is
continuous so far. Since the rational are dense in the
reals the extension of the result to all real numbers
now follows.

f is a continuous real-valued
function such that f(x + y) = f(x) f(y) for all real x, y. If
f(2) = 5, find f(5).

More generally, since f(nx) = f(x)n for all
integers n, f(1) = c = f(1/n)n for some constant c and all
integers n. Thus f(k/n) = f(1/n)k = f(1)k/n = ck/n for all
rational numbers k/n. By continuity, it follows that f(x)
= cx for all real numbers x. Since f(2) = 5,
c = 5 , so f(5) = 25 5 .

Let f(x) be a polynomial with real
coefficients for which the equation f(x) = x has no real

solution. Prove that the equation f(f(x)) = x has no real
solution either.

Let g(x) = f(x) – x. Then, g(x) is a
polynomial that never vanishes. We argue that it must
always have the same sign. Suppose if possible that
g(a) < 0 < g(b) for some reals a and b. Since g(x), being
a polynomial, is continuous, the Intermediate Value
Theorem applies and there must be a number c between
a and b for which g(c) = 0, yielding a contradiction.
Thus, either g(x) > 0 for all x or else g(x) < 0 for all x. Then,

f(f(x)) – x = f(f(x)) – f(x) + f(x) – x
= g(f(x)) + g(x)

for all real x. Since g never changes sign, both g(x) and
g(f(x)) have the same sign (either positive or negative)
and so their sum cannot vanish. Hence f(f(x)) x for
any real x.

     FFFFF
1. Use the Intermediate Value Theorem to show that

there is a number c in (1, 2] such that 4 – c = 2c.
2. Verify that the Intermediate Value Theorem applies

in the indicated interval and find the value of c
guaranteed by the theorem.
(i) f(x) = x2 + x – 1, [0, 5], f(c) = 11
(ii) f(x) = x3 – x2 + x – 2,  [0, 3], f(c) = 4

(iii) f(x) = 
1x
xx2


 , ,4,

2
5







 f(c) = 6

3. Use the Intermediate Value Theorem to show that
the equation has atleast one root :
(i) 2x3 + x2 – x = 4 (ii) x5 – 2x2 + x + 11 = 0

4. Prove that the equation 2x3 + 5x2 – 5x – 3 = 0 has a
root between – and –1, another between –1 and
0 and a third between 1 and 2.

5. Show that the equation x3 – 3x + 1 = 0 has a real
root in the interval (1, 2). Approximate this root.

6. Show that the equation x3 – 3x2 + 1 = 0 has three
distinct roots by calculating the values of the
function at x = –3, –2, –1, 0, 1, 2 and 3 and then
applying the Intermediate Value Theorem of
continuous functions on appropriate closed
intervals.

7. Prove that x3 + x2 – 3x – 3 = 0 has a root between 1
and 2, between 1.5 and 1.75, between 1.625 and 1.75,
etc. Show that if we continue this procedure, we

can approximate the root of the equation as closely
as we want.

8. If f(x) = x3  – x2 + x, show that there is a number c
such that f(c) = 10.

9. Use the Intermediate Value Theorem to show that
there is a root of the given equation in the specific
interval :
(i) )1,0(,x–1x3  (ii) ln x = e–x, (1, 2)

10. Is there a number that is exactly 1 more than its
cube?

11. Apply the Intermediate Value Theorem to prove
that every real number has a cube root.

12. Apply the Intermediate Value Theorem to prove
that the equation x5 + x = 1 has a solution.

13. Apply the Intermediate Value Theorem to prove
that the equation x3 – 4x2 + 1 = 0 has three solutions.

14. Let f be continuous on [a, b] and let f(x) be always
rational. What can we say about f ?

15. Suppose that f and g are two functions both
continuous on the interval [a, b], and such that
f(x) = g(b) = p and f(b) = g(a) = q where p  q.
Apply Intermediate Value Theorem to the function
h(x) = f(x) – g(x) to show that f(c) = g(c) at some point
c of (a, b).

16. Suppose that today you leave your home at
1 P.M. and drive to school, arriving at 2 P.M.
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Tomorrow you leave your school at 1 P.M. and
retrace the same route, arriving home at 2 P.M. Show
that at some instant between 1 and 2 P.M. you are
at precisely the same point on the road both days.

17. Let f : [1, e]  [0,1] be continuous then prove that
f(x) = ln x has atleast one solution in  [1, e].

18. Let  f : (1, 10)  [2,11] be a continuous function,

then prove that  it cannot be an invertible function.
19. Let f be continuous on [a, b] and suppose that

f(x) = 0 for every rational x in [a, b]. Prove  that
f(x) = 0 for all x in [a, b].

20. Let f, g be continuous functions from R to R.
Suppose that f(x) = g(x) for all x Q. Prove that
f(x) = g(x) for all x R, i.e. f = g.

FFFFF
21. Show that the equation

x + sin x = 
3x

1


has atleast one solution on the interval [0, ].

22. Show that the equation x5 + 3x4 + x – 2 = 0 has
atleast one root in the interval [0, 1].

23. Show that the equation x5 – 2x3 + x2 – 3x + 1 = 0
has atleast one root in the interval [1, 2].

24. Find roughly the situations of the roots of
2x3 – 3x2 – 36x + 10 = 0.

25. Apply the Intermediate Value Theorem to show
that every positive number a has a square root.
That is, given a > 0, prove that there exists a
number r such that r2 = a.

26. Suppose that a < b < c. If the function f is
continuous on the closed interval [a, b] and on
the closed interval [b, c], does it follow that f is
continuous on [a, c] ? If f is continuous on the
closed interval [n, n + 1] for every integer n, does
it follow that f is continuous on the entire real line?

27. Let  f be a continuous function on R and periodic
with fundamental period 1 i.e. f(x + 1) = f(x), then
prove that there will be a real number x0, such that
f(x0 + ) = f(x0).

28. Use the Intermediate Value Theorem to show that
there is a square with a diagonal length that is
between r and 2r and an area that is half the area
of a circle of radius r.

29. Let f : [0, 1]  [0, 1] and g : [0, 1]  [0, 1] be
continuous fractions. Given that f(0) < g(0) and
(f(1))3 > g(1) prove that there is a number c in (0, 1)
such that (f(c))3  =  g(c)

30. Prove that xe3x   has atleast one real root.

31. Let f be a polynomial of degree n, say

f(x) = 


n

k

k
kxc

0
, such that the first and last

coefficients c0 and cn have opposite signs. Prove
that f(x) = 0 for atleast one positive x.

32. Given a real valued function f which is continuous
on the closed interval [a, b]. Assume that f(a)  a
and that f(b)  b. Prove that f has a fixed point in
[a, b].

33. Prove that if f is continuous and has no zeros in
[a, b], then either f(x) > 0 for all x in [a, b] or f(x) < 0
for all x in [a, b].

34. A rational function can have infinitely many x-
values at which it is discontinuous. True or false.

35. Let f1(x) and f2(x) be continuous on the closed
interval [a,b]. If f1(a) < f2(a) and f2(b) > f2(b), prove
that there exists c between a and b such that f1(c) = f2(c).

36. Show that the equation x4 + 5x3 + 5x – 1 = 0 has
atleast two solutions in the interval [–6, 2].

37. If f(x) is a continuous function in [2, 3] which takes
only irrational values for all x  [2, 3] and f(2.5) =

5  then find f(2.8).

38. Find an interval in which the given equation has
atleast one solution. Note that the interval is not
unique.
(i) ln x = (x – 2)2 (ii) e–x = x3

(iii) cos x – sin x = x (iv) tan x = 2x2 – 1
39. Let f be a continuous function from R to R.

Suppose that (i) f(1) = 1 and that (ii) f(x + y) =
f(x) + f(y) for all real x and y.
(a) Prove that f(x)= x for every positive rational x.
(b) Prove that f(0)=0 and that f(–x)=–f(x) for all real x.
(c) Prove that f(x) = x for all real x.
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40. Let  f  be  a  continuous  function  such that f(x)
f(f(x)) = 1 and f(2006) = 2005, then consider the

following assertion : f(1000) = 1000
1

. If the reason

is : as f(f(x)) = 
)x(f

1
 we have 

t
1)t(f 

 f(1000) = 
1000

1

Prove that the assersion is correct but the reason
is false.

41. Find all functions f : R  R, continuous at x = 1
such that  x  R, f(x) = –f(x2).

42. Let f and g be continuous functions defined for
all x. Assume that f(x) = g(x) for all rational x. Deduce
that f(x) = g(x) for all real numbers x.

43. Let us determine all continuous functions f such
that f(x + y) = f(x)f(y) for all real numbers x and y
and such that the values of f are always positive.
(a) Let b be a fixed positive number. Let f(x) = bx.

Check that f(x + y) = f(x)f(y). [Part(b) will show
that there are no other functions that satisfy
the stated conditions]

(b) Assume that f is a continuous function such
that f(x) > 0 for all x and f(x + y) = f(x) f(y) for
all x and y. Let f(1) = c.
(i) Show that f(n) = cn for any positive

integer n.
(ii) Show that f(0) = 1.

(iii) Show that f(n) = cn for any negative
integer n.

(iv) Show that f(1/n)= n c  for any positive
integer n.

(v) Show that f(m/n) = mn )c(  for any integer
m and positive integer n.

(vi) By (v), f(x) = cx for any rational number x.
Assuming that f is continuous and that
the exponential function cx is
continuous, deduce that f(x) = cx for all
real numbers x.

44. Let f be a continuous function whose domain is
the x axis and which has the property that
f(x + y) = f(x) + f(y) for all numbers x and y. This
question shows that f must be of the form f(x) = cx
for some constant c.
(a) Let f(1) = c. Show that f(2) = 2c.
(b) Show that f(0) = 0.
(c) Show that f(–1) = –c.
(d) Show that for any positive integer n, f(n) = cn.
(e) Show that for any negative integer n, f(n) = cn.
(f) Show that f )( 2

1  = c/2.
(g) Show that for any nonzero integer n, f(1/n) = c/n.
(h) Show that for nay integer m and positive

integer n, f(m/n) = c(m/n).
(i) Show that for any irrational number x, f(x) =

cx. (This is where the continuity of f enters).

Find the values of a and b if f is
continuous at x = /2, where

tan 6x

tan 5x6
f(x) , 0 x

5 2

    
 

= a + 2,                x = 
2



= 


 x
2

,|)xcot|1( a
|xtan|b

We have f a 2
2

    
 

)h52/5tan(
)h2/(6tan

0h0h 5

6
limh

2
flim


















 


=
)h52/5tan(

)h63tan(

0h 5

6
lim













= 

tan 6h
cot 5

h 0

6lim
5






 
 
 

tan 6h tan 5h

h 0

6lim
5





   
 

= 1
5

6
lim

0

0h











a

|)h2/tan(|b

0h0h
h

2
cot1limh

2
flim



 













 








 


= 
bcoth

b/aa
h 0
lim(1+ tan h) = e
®

.

Since f is continuous at x = /2, we have
a + 2 = 1 = eb/a

which gives a = –1, b = 0
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Obtain a relation in a and b, if possible,
so that the function

f(x) = 
n n n

n 1 n nn

x (a sin(x )) (b sin(x ))lim
(1 x )sec(tan (x x )) 

  
 

is continuous at x = 1.

f(x) = 
n n n

n 1 n nn

x (a sin(x )) (b sin(x ))lim
(1 x )sec(tan (x x )) 

  
 

For continuity  at x = 1

x 1
lim


f(x) must exist and equals f (1)

f(1) =  
n n n

n 1 n nn

1 (a sin1 ) b sin(1 )
lim

(1 1 )·sec tan (1 1 ) 

  
 

= 1

a sin1 b sin1

sec(tan 2)

  
 = 

a b

2 5



Now  for x > 1 in the immediate neighbourhood

f(x) = 

n
n

n

n 1 n n
n

b sin xa sin(x )
xlim

11 sec(tan (x x ))
x

  

 

   
 

= 
1

a (some quantity between 1 and 1) 0

1·sec(tan )

  


= 0

Similarly for x < 0  in the immediate neighbourhood of  0

f(x) = 1

b

1· sec(tan ) 
 = 0

Hence f (x) = 0  for x  1

   x 1
lim
  f (x) = 0  = a + b.

If f  (x) = 4

A cosx Bx sin x 5

x

 
,

(x  0)  is continuous at  x = 0, then find the value of A
and B. Also find  f (0) .

For continuity    x 0
lim


 f (x) = f (0)

Now for x 0
lim
 4

A cos x Bx sin x 5

x

 
 to exist

as  x  0,  Numerator    A  5   and
Denominator   0 .  Hence  A  5 = 0       A = 5

Hence  x 0
lim
 4

Bx sin x 5 (1 cos x)

x

 

=  x 0
lim


+-
2

2

2

sin x sin x5
x 1 cos x x

.B

x

as   x  0,  Numerator  B  
5

2
  and

Denominator    0       B  =  
5

2

x 0
lim
 4

x sin x 2 (1 cos x)

x

 

=  
5

2 x 0
lim


2

4

x x x
2 2 22 x sin cos 4 sin

x



= 
5

2 x 0
lim
  

x
22 sin

x   x 0
lim
  3

x x
2 2x cos 2 cos

x



Let   x = 2 

=  
5

16 0
lim
  3

2 cos 2sin   


=  
5

16
 0

lim
   2 cos   3

( tan )  


=  
5

8
  0

lim
  3

tan  


  =  
5

8
  

1

3
  
    =   

5

24
.

Since f is continuous f(0) =   
5

24
.

Let S denotes the sum of an infinite
geometric progression whose first term is the value of
the function

f(x) = 
sin(x ( / 6))

3 2cos x

 
  at x = /6, if  f(x) is continuous

at x = /6 and whose common ratio is the limiting value

of the function  g (x) = 1/3

1/3

1 2 5x

sin(x) ln(1 3x)
( tan x ) (e 1)




as x  0. Find the value of S.

a = 





 

6
f  = x 6

lim


 
xcos23
)6(xsin




= 
 

 x 6

sin x ( 6)
lim

2 cos( 6) cosx

 
 

=
x 6

2sin((x/2) ( /12))cos((x/2) ( /12))lim
4sin(( /12) (x/2)) sin(( /12) (x/2))

   
   

= 2
2

 = 1.

Hence, a = 1
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r = 

 
 
 1/3

1/31/3

2 1/3x 0 1
5.x

5xsin(x) .ln(1 3x)lim
5xtan x e 1

x

 



 
  

 

=  
1/3x

x 0

3ln(1 3x) 3lim
5 5


 .

  Sum S = 2
5

5
31

1
r1

a







 Let f (x)

= 

nx

n

x x

a 1 bsin x sin bx
x 0

cosx cos bxx sin x

a sin bx b sinax
x 0

tan bx tanax

      


  


be continuous at x = 0 (a, b > 0 ,b  1, a  b). Obtain f(0)
and a relation between a, b and n.

f(0+) 
nh

nh 0 h 0

a 1 bsinh sin bhlimf (0 h) lim
cosh cos b hsinh.h® ®

é ù- -
+ = ê ú

ê ú-ë û

= 
h

h 0

a 1 hlim
h sinh®

-
=

n2

2
bsin(h) sin(bh) h

cos h cos bhh.h

é ùæ ö-ê úç ÷
ç ÷ê ú-è øë û

= ln a · ln  (say)

where  l = 
2

3h 0

bsin h sin bh hlim ·
cos h cos bhh®

-

-

= 3h 0

b(sin h h) (sin bh bh)lim
h®

é ù- - -ê ú
ê úë û

.

1

2
2 2 2

1 cosbh 1 coshb
b h h


        
   

= 
3

3 3 3
h 0

sinh h sin bh bh)lim b b
h b h®

é ùæ öæ ö- -ê úç ÷ç ÷ -ç ÷ ç ÷ê úè ø è øë û
12b 1.

2 2

  
  
   

= 
3

2
1 1 2b b .
6 6 (b 1)

               

[using 3h 0

sin x x 1lim
6x


 ]

= 
2

2

b(b 1) 2 b
·

6 3(b 1)

      

Hence   f (0+) = ln a ·
nb

3
 
 
 

Now f (0–) = h 0
lim f (0 h)




h h

h 0

a sin( bh) b sin( ah)lim
tan( bh) tan( ah)

 



  


  
(multiply Dr & Nr by ah · bh)

= 
h h

h hh 0

a sin ah b sin bhlim
a .b [tan ah tan bh]




= ....)bh(...)ah(

...)bh)(blnh1(....)ah.....)(alnh1(
lim

0h 




= ......h)ha(

......h)ba(
lim

0h 



 = 1

  If f (x) is continuous at x = 0,   then f (0) = 1.
Also the continuity relationship between a, b and n

should be     ln a ·
nb

1
3

   
 

.

If   f (x)

=  
5

sin3x A sin2x B sinx
x

 (x  0)

is continuous at  x = 0, then find f (0).
We have

f(0)= 
3 5

5x 0

1 (3x) (3x)
lim 3x ......

3! 5!x

  
    

  
3 5(2x) (2x)

A 2x .....
3! 5!

 
    

 
3 5x x

B x ......
3! 5!

  
     

  
...(1)

Now   f (x) is continuous at x = 0, so we must have
2A + 3 + B = 0 ...(2)

and
27 8A B

6 6 6
   = 0

 8A + B = – 27 ...(3)
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 On solving (2) and (3), we get
A = – 4,  B = 5

Hence, f (0) =
!

B

!

.A

! 55
2

5
3 55

  = 1.

Alternative:
We have f (0)

=  
3

5x 0

3sin x 4sin x 2Asin xcosx Bsin x
lim

x

  

For limit to exist 3 + 2A + B = 0 ...(4)

= 
3

5x 0

3sin x 4sin x 2Asin xcos x (3 2A)sin x
lim

x

   

= 
2

4x 0

sin x 3 4sin x 2A cos x 3 2A
lim

x x

    
 
 

= 
2

4x 0

2A(1 cosx) 4sin x
lim

x

  

= 
2 2

4x 0

x
4Asin 4sin x

2lim
x

 

=  
2 2 2

4x 0

x x x
4Asin 16sin cos

2 2 2lim
x

 

=  
2 2

4 2x 0

x x
sin A 4cos

2 2lim
x x
4



  
  

 
 

 A + 4 = 0    A =  – 4     B = 5
Also f (0) = 1.

The function

f (x)  =  
2 x 2 x

3

e 1 x e 1

x

( )  
is not defined at  x = 0 .

What should be the value of  f (x)  so that  f (x)  is
continuous at  x = 0 ?

l = x 0
lim
   

2 x 2 x

3

e 1 x (e 1)

x

  

Put x = 3 t = t 0
lim


 

6 t 6 t

3

e 1 3t (e 1)

27 t

  

= t 0
lim
  

2 t 3 2 t 2 t 6 t

3

(e 1) 3e (e 1) 3t (e 1)

27 t

    

= t 0
lim


2 t 3 2 t 2 t 2 t 2 t 2 t 6 t

3

(e 1) 3e [e 1 t(e 1)] 3t[e (e 1) e 1]

27 t

        

= t 0
lim


 

2 t 3

3

(e 1)

27 t


  +  

1

9
  t 0

lim
   e2t  l

 t 0
lim


 
2

1

9 t   (e2t  1) (e4t  1)


8

9

l
 = 

8

27
    

8

9
  t 0

lim
  

2 te 1

2 t

 
 
 

    
4 te 1

4 t

 
 
 

 l  =  
1

3
  1  l  =    

2

3
.

The value of f(0) = l = – 
2

3

Let  f (x) = cosec 2x + cosec 22 x +
cosec 23 x + .......... cosec 2n x,  x (0, /2)

and  g (x) = f (x) + cot 2n x
If

H (x) = 

g(x) cosec x

x x

(cosx) (sec x) if x 0
p if x 0

e e 2cosx
if x 0

xsin x



  
 
   


find the value of p, if possible to make the function H
(x) continuous at x = 0.

f(x) = cosec 2x + cosec 22x + .... + cosec 2n x

Now cosec 2x = 
1

sin 2x  = 
sin(2x x)

sin xsin2x


 = cot x – cot 2x

Similarly cosec 22 x = cot 2x – cot 22 x
cosec 23 x = cot 22 x – cot 23 x
M
cosec 2n x = cot 2 n – 1 x – cot 2n x_____________________________________________

    f (x)  =  cot x   –   cot 2n x
    g (x) =  f (x) + cot 2n x = cot x

Now 
h 0
lim
 H (0 + h)  = 

h 0
lim
 ((cos h)cot h + (sec h)cosech )

= h 0
lim coth (cosh 1)

e 


 + h 0
lim cosech (sec h 1)

e 


= 1 + 1 = 2  ...(1)

H (0 – h) = 
h 0
lim
  

h he e 2cosh

h sech

  

= 
h 0
lim
  

h h

2 2

e e 2 2(1 cosh)

h h

   
 

 
 = 2 ...(2)

From (1) and (2) H (x) will be continuous  if p =  2.
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Check continuity of the function

f(x) = n21n2

n2

n xx1

)1xsin(xxcos
lim






We have

f(x) = 

2n

n

2n

n

2n

cos x 0
, | x | 1 lim x 0 if | x | 1

1 x 0
cos x sin(x 1)

, | x | 1
1 1 1

cos x
sin(x 1) sin(x 1)xlim , | x | 1

1 x 1x 1
x







         

     
        

Q

i.e. f(x) = 

cos x, | x | 1
1 sin 2, x 1
1, x 1
sin(x 1)

, | x | 1
x 1

 
   
 
 

 
The above function may have discontinuities only at
x = ±1.
At x = –1, we have

1)h1(coslim)h1(flim
0h0h




.

f(–1) = –1 + sin2.
This implies that f(x) is discontinuous at x = –1.
At x = 1, we have

        1
h

sinh
lim

1h1

)1h1sin(
lim)h1(flim

0h0h0h











.

1)h1(coslim)h1(flim
0h0h




.

f(1) = –1
Thus, f(x) is discontinuous at x = 1.
Hence, f(x) is continuous on x  R 

If g(x) = 
m

mm

x f(1) h(x) 1
lim

2x 3x 3

 
 

is continuous at x = 1 and g(1) = 
xln/

x
)}ex{ln(lim 2

1
,

then find the value of 2g(1) + 2f(1) – h(1); assume that
f(x) and h(x) are continuous at x = 1.

Here,

g(1) = 
1x

lim
 {lne + lnx xln/}2

= 
1x

lim
  {1 + lnx xln/}2

= xln
xlnlim

xe
2

1

g(1) = e2 ...(1)

Now, 1x
lim  g(x) =   m1x

limlim  










3x3x2

1)x(h)1(fx
m

m

= 
h(1) 1

3 3




{since x < 1  m
lim  xm = 0}

 1x
lim  g(x) = 

6

1)1(h 
...(2)

And, 1x
lim  g(x) = 

m

mmx 1

x f(1) h(x) 1
lim lim

2x 3x 3 

  
 

  

= mm

mm

mx x/x/

x/x/)x(h)(f
limlim

332
11

11 


 
 = 

2

)1(f

 1x
lim  g(x) = 

2

)1(f
...(3)

As g(x) is continuous at x = 1, from (1), (2) and (3)

e2 =
2

)1(f

6

1)1(h




 h(1) = 6e2 – 1 and f(1) = 2e2

 2g(1) + 2f(1) – h(1) = 2e2 + 4e2 – 6e2 + 1 = 1
 2g(1) + 2f(1) – h(1) = 1.

Prove that
f(x) = [tan x] + ]x[tanxtan  . (where [.] denotes

greatest integer function) is continuous in 




 

2
,0 .

f(x) = [tan x] + ]x[tanxtan 

Let g(u) = [u] + u [u] ,
Then f(x) = g(u(x)) where u(x) = tan x  0
We discuss continuity of g(u) for u = a  N.
LHL at u = a :

au
lim  g(u) = 

0h
lim
  [a – h] + ]ha[ha 

= 
0h

lim
  (a – 1) + a h (a 1)  

= a – 1 + 1 = a
Now RHL at u = a :

au
lim  g(u) = 

0h
lim
  [a + h] + a h [a h]  

= 
0h

lim
  a + aha 

= a,
and g(a) = [a] + ]a[a   = a as a  N.
So, g(u) is continuous  a  N, now g(u) is clearly
continuous in (a – 1, a)  a  N.
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Hence g(u) is continuous in [0, ).
Now u(x) = tan x is continuous in [0, /2).
So, f(x) = g{u(x)} is continuous in [0, /2).

If f(x)= )x21)(x1(

x

)x1(

x






+ )x31)(x21(

x

 + .....

to infinity, then examine the continuity of f at x = 0.
For x  0, sum of n terms of the series












x1

1
1  + 











 x21

1

x1

1

+ 










 x31

1

x21

1
 + ... + 











 nx1

1

x)1n(1

1

= 1 – 
nx1

1


.

 f(x) = 










 nx1

1
1lim

n
 = 1 – 0 = 1.

and f(0) = 0

 f(x) = 







0x,x

0x,1

Clearly f(x) is discontinuous at x = 0.
Show that the function f : RR

defined by )x!n/(sine
)x(f 
 11

1  can be made

discontinuous at any rational point in the interval
[0, 1] by a proper choice of n.

Let x be rational say p/q, where p and q
are integers prime to each other. Then taking n = q, we
see that

n! x = q! .  . (p/q)
is an integral multiple of  and therefore sin n! x = 0
but cos n! x = 1 or –1 according as n! x is an even or
an odd integer. Now
sin n! (xh) = sin n! x cos n! h cos(n! x) sin(n! h)

= sin n! h or  sin(n! h) ...(1)
according as n! x is even or odd.
(i) Let n! x be an even integer.

Then )}hx(!nsin{/h e
lim)x(f 




 10 1

1

0
e1

1

e1

1
lim

)h!nsin(/10h






   [using (1)]

and
)}hx(!nsin{/h e

lim)x(f 




 10 1

1

)h!nsin(/10h e1

1
lim  

  [using (1)]

1
01

1

e1

1






 

(ii) Let n! x be an odd integer. Then

f(x+) = 1
e1

1
lim

)h!nsin(/10h


 

and 0
1

1
10




 


)h!nsin(/h e

lim)x(f .

Hence f(x+)  f(x–)  at any rational point x.

Show that the function f : R  R
defined by

11
11





 t

t

t )xsin(

)xsin(
lim)x(f

has discontinuity of first kind at the points
x = 0, 1, 2, ...., n .... .

At x = 0, 1, 2, 3, ..... , n .... , we have

sin x = 0, so that 0
1)01(

1)01(
lim)x(f

t

t

t








at these values.
Now, if  2m < x < 2m + 1 (m being an integer), then sin
x is positive. Hence for such values of x, we have

1
)/1(1

)/1(1

)xsin1/(11

)xsin1/(11
lim)x(f

t

t

t












And if 2m + 1 < x < 2m + 2. sin x is negative and so

t
lim (1 + sin x)t = 0.

 f(x) = 
10

10




 = –1 for these values of x.
Hence if x an even integer, then

f(x) = 0, f(x+) = 1 and f(x–) = –1,
and if x is an odd integer, then

f(x) = 0, f(x+) = –1 and f(x–) = 1.
Hence f has discontinuities of the first kind at

x = 0, 1, 2, .... , n , .... ,

Discuss the nature of the
discontinuity of the function f defined by

f(x) = n2

n2

n x1

xsinx)x2log(
lim





 at x = 1.

Show that f(0) and f(/2)  differ in sign and explain still
why f does not vanish in [0, /2].

We shall first of all obtain an expression
for f in [0, /2] in a form free from limits.
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If 0  x < 1, then x2n  0 as n   , and if x > 1, then
x–2n  0 as n   , therefore we have :

If 0  x < 1, then f(x)  = n2

n2

n x1

xsinx)x2log(
lim






= log (2 + x) ...(1)

If x = 1, then f(x) = n2

n2

n 1

1sin1)3log(
lim






= )1sin3(log
2

1
 ...(2)

If x > 1, then f(x) = 
1x

xsin)x2log(x
lim

n2

n2

n 








= –sin x ...(3)
From (1), (2) and (3), we have

f(x) = 













1xifxsin

1xif),1sin3(log

1x0if)x2log(

2
1

...(4)

f(1–) = )h1(flim
0h




= )h3log(lim
0h




= log 3

f(1+) = )h(flim
h




1
0

= )h1sin(lim
0h




= –sin1.

We find that f(1–) and f(1+) both exist but are unequal;
also neither of them is equal to f(1). Therefore f has a
discontinuity at x = 1.
From (4), we find that
f(0) = log 2 > 0, f(/2) = –sin /2 = –1,
so that f(0) and f(/2) are of opposite signs.
Again, from (4) it is clear that f does not vanish
anywhere in [0, /2].
The function f is not continuous in [0, /2], the point
x = 1 being a point of discontinuity. This explains as to
why f does not vanish anywhere in [0, /2] even though
f(0) and f(/2) are of opposite signs.
The hypothesis as well as the conclusion of the
Intermediate Value Theorem are not satisfied for the
function f in [0, /2].

1. A function f(x) is  said  to be  continuous
at  x = a ,  if  x a

lim
 f(x) = f(a).

2. A function f(x) is said to be continuous at the left
end point x = a if, f(a) = ax

lim  f(x) and f(x) is said to
be continuous at the right end point x = b if,
f(b) = bx

lim  f(x)

3.
f (x) if x is in the domain of f

F(x)
L if x a


  
The function F is continuous is called the
continuous extension of f to x = a, provided
 f(x)  = L exists.

4. A function f is said to be continuous in an open
interval (a , b) if f is continuous at each and every
point lying in the interval (a , b) .

5. A function f is said to be continuous in a closed
interval [a, b] if  :
(i) f is continuous in the open interval (a , b)

(ii) f is right continuous at ‘a’  i.e. 
x a
lim


 f(x) = f(a).

(iii) f is left continuous at ‘b’ i.e. 
x b
lim


 f(x) = f(b).

6. We use the term suspicious point for a number c
where
(i) The definition of the function changes or

domain of f splits,
(ii) Substitution of x = c causes division by 0 in

the function.

7. If both the one-sided limits 
x a
lim


 f(x) and 

x a
lim


 f(x)

exist, but the conditions of continuity are not
satisfied. Then the function f(x) is said to have a
discontinuity of the first kind  at the point a.

8. A function f(x) having a finite number of
discontinuities of first kind in a given interval is
called sectionally or piecewise continuous
function.

9. The function f(x) is said to have discontinuity of
the second kind at x = a, if atleast one of the one-
sided limits (L.H.L. or R.H.L.) at the point x = a
does not exist or equals to infinity.

10. A function is said to have a removable discontinuity

at x = a, if x a
lim
 f(x) exists but is  not equal to f(a). In

this case we can  redefine the function such that

x a
lim
 f(x) = f(a) and make it continuous at x = a.
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11. A function is said to have a missing  point
discontinuity at  x = a  if 

x a
lim


f(x) exists while the
function is undefined at  x = a.

12. A function is said to have an isolated  point
discontinuity at  x = a  if 

x a
lim


f(x) exists and the
function is defined at  x = a, but they are unequal.

13. A function is said to have an irremovable

discontinuity at x = a, if x a
lim
 f(x) does not exist. In

this case we cannot redefine the function such that

x a
lim
 f(x) = f(a) and make it continuous at x = a.

14. A function is said to have a finite or jump
discontinuity at  x = a  if 

x a
lim


f(x) does not exist
since  the left hand limit and the right hand limit
are unequal, but the one-sided limits do exist.

15. If x = a is a point of finite discontinuity of the
function f(x), then the graph of this function
undergoes a jump at x = a. The difference R.H.L. –
L.H.L. i.e. f(a+) – f(a–) is called the jump in the
function at x = a.

16. The difference between the greatest and least of
the three numbers f(a+), f(a–), f(a) is the saltus or
measure of discontinuity of the function at the
point a.

17. A function is said to have an infinite discontinuity
at  x = a  if atleast one of the one-sided limits is
infinite.

18. The concept of pole discontinuity  is related with
infinite limit. For a point x = a to qualify as a pole

of a function f, we must have 
x a

1lim 0
f (x)

 .

19. A function is said to have an oscillatory
discontinuity at  x = a  if atleast one of the one-
sided limits does not exist because of too much
oscillation in the values of the function.

20. If f(x) and g(x) are continuous at x = a, then the
following functions are also continuous at x = a.
(i) cf(x) is continuous at x = a, where c is any

constant.
(ii) f(x)   g(x) is continuous at x = a.
(iii) f(x). g(x) is continuous at x = a.
(iv) f(x)/g(x) is continuous at x = a, provided

g(a)  0.

21. If f(x) is continuous at x = a and g(x) is
discontinuous at x = a, then we have the following
results.
(i) Both the functions  f(x) + g(x) and  f(x) – g(x)

are discontinuous at x = a.
(ii) f(x). g(x) is not necessarily discontinuous at

x = a.
(iii)  f(x)/g(x) is not necessarily discontinuous at

x = a.
22. If f(x) and g(x) both are discontinuous at x = a,

then we have the following results.
(i) The functions  f(x) + g(x) and  f(x) – g(x) are

not necessarily discontinuous at x = a.
However, atmost one of f(x) + g(x) or f(x) –
g(x) can be continuous at x = a. That is, both
of them cannot be continuous simultaneously
at x = a.

(ii) f(x). g(x) is not necessarily discontinuous at
x = a. (iii)  f(x)/g(x) is not necessarily
discontinuous at  x = a.

23. If f(x) is continuous at x = a and g(x) is continuous
at x = f(a) then the composite function (gof)(x) is
continuous at x = a.

24. Let a function f(x) be continuous at all points in
the interval [a, b], and let its range be the interval
[A, B] and further a function g(x) is continuous in
the interval [A, B], then the composite function
(gof)(x) is continuous in the interval [a, b].

25. If the function f is continuous everywhere and
the function g is continuous everywhere, then
the composition gof is continuous everywhere.

26. All polynomials, trigonometric functions,  inverse
trigonometric functions, exponential and
logarithmic functions are continuous at all points
in their domains.

27. If f(x) is continuous, then | f(x) | is also continuous.
28. A root of a continuous function is continuous,

wherever it is defined. That is, the composition
h(x) = n )x(g  = [g(x)]1/n of f(x) = n x  and the
function g(x) is continuous at a if g is, assuming
that g(a)  0 if n is even (so that n )a(g  is defined).

29. If the function y = f(x) is defined, continuous and
strictly monotonic on the interval I, then there
exist a single valued inverse function x = g(y)
defined, continuous and also strictly monotonic
in the range of the function y = f(x).
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30. Assume f is integrable on [a, x] for every x in

[a, b] and let A(x) = dt)t(f
x

a
 . Then the integral A is

continuous at each point of [a, b]. (At each
endpoint we have one-sided continuity)

31. If a function f(x) is continuous at every point of a
closed interval [a, b], then the function f(x) is
bounded on this interval. Note that the
boundedness of a function on the interval [a, b]
means that there is a number K > 0 such that  |f(x)|
< K for all x  [a, b].

32. If a function is continuous in a closed interval
there exists atleast one point at which the function
assumes the greatest value and atleast one point
at which it assumes the least value on that interval.

33. If f is continuous at c and f(c)  0, then there exists
an interval (c - , c + ) around c such that f(x) has
the sign of f(c) for every value of x in this interval.

34. If a function f is continuous on a closed interval
[a, b] and the numbers f(a) and f(b) are different
from zero and have opposite signs, then there is
atleast one point c on the open interval (a, b) such
that f(c) = 0.

35. If f is continuous on the closed interval [a, b] and
k is any number between f(a) and f(b), then there

is atleast one number c in [a, b] such that f(c) = k.
36. A function continuous on a closed interval [a, b]

assumes all the intermediate values lying between
its least and greatest values on [a, b].

37. A continuous function whose domain is closed
must have a range in a closed interval but
it is not necessary that if the domain is open then
range is also open (range can be closed).

38. Let f be a continuous strictly increasing function
on a closed interval [a, b] and let  = f(a), = f(b).
Then  (i) the range of f for the closed interval [a, b]
is the closed interval [], (ii) there exists a function
x = g(y), the inverse of f, which is one-valued,
strictly increasing and continuous on [].
A strictly decreasing function f(x), continuous on
[a, b] has an inverse, which is a strictly decreasing
continuous function on [] where  =
f(a),  = f(b).

39. Let a strictly increasing function y = f(x) map the
closed interval [a, b] onto the closed interval [],
i.e. f([a, b]) = []. Then f is continuous on [a, b].

40. Let f(x) be a function defined and bounded in the
interval [a, b], then, if M and m are the bounds of
f(x), the number M – m is called the span or
oscillation of the function f(x) in the interval.

SINGLE  CORRECT  ANSWER  TYPE

1. The function f(x)

=
1/2 1/3

2

1 cosx(cosx(cos2x) (cos3x)

x


is not defined

at x = 0. If f(x) is continuous at x = 0 then f(0) equals
(A) 1 (B) 3
(C) 6 (D) –6

2. If f(x) = 
x

2

x e cos2x

x

 
, x   0 is continuous at

x = 0, then

(A) f(0) = 
5

2
(B) [f(0)] = –2

(C) {f(0)} = –0.5 (D) [f(0)]. {f(0)} = –1.5

3. If f(x) = 







1x,|2x||3x2|

1x,1|1x| 2

, then it is

continuous for
(A) R (B) R – {0}
(C) R – {1} (D) none of these

4. If f(x) = [x] + 



 



 

3

2
x

3

1
x  then number of

points of discontinuity of f(x) in [–1, 1] is
(A) 5 (B) 4
(C) 7 (D) none

5. If f(x) = 










0}x{,K

0}x{,
}x{

}xsin{

, where [.] denotes

fractional part function, then f(x) will be continuous
(A) if K = 0 (B) if K = sin 1
(C) if K = 1 (D) for no value of K

6. If f(x) is a continuous function from R  R and attains

only irrational values, then 


100

1r

)r(f  is equal to
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(A) 


99

1r

)r(f (B) 


100

1r

)r2(f

(C) 1)r2(f
100

1r




(D) none of these

7. If f(x) = sgn (cos 2x – 2 sin x + 3), then f(x)
(A) is continuous over its domain
(B) has a missing point discontinuity
(C) has isolated point discontinuity
(D) irremovable discontinuity

8. Let f(x) = x2

1

)x(sin  , x /2 if f(x) is continuous
at x = /2 then f(/2) is,
(A) e (B) 1
(C) 0 (D) none

9. If f(x) = 
x 1

x


, the number of points of

discontinuity of the composite function. y = f
(f(f(x))) are
(A) 0 (B) 1
(C) 2 (D) 3

10. Let f(x) = 























2x,
2x

]x[x
2x,b

2x,
xx2

|2xx|a
2

2

If f(x) is continuous at x = 2 (where [.] denotes
greatest integer function) then (a, b) is
(A) (1, 1) (B) (1, 2)
(C) (2, 1) (D) (2, 2)

11. The function f(x) = | 2 sgn 2x | + 2 has
(A) jump discontinuity
(B) removable discontinuity
(C) infinite discontinuity
(D) no discontinuity

12. If g(x) = 










 n4

n2

x x1

xsinxx
lim  then

(A) g(x) is continuous at x = 1
(B) g(x) is discontinuous at x = 1
(C) limit does not exist at x = 0
(D) none of these

13. Let f(x) = 
4

x3

 – a sin x + 3, –4  x  4. The value of

f(x) is 
199

1999
 for some x  [–4, 4] This statement is

(A) true (B) false
(C) true only if a  0 (D) true only if a  [–4, 4]

14. The ordered pair (a, b) such that

f(x) = 

x

2

1 x

be cosx x
, x 0

x
a , x 0

tan (e )
42 , x 0

x




  





    

  
becomes continuous at x = 0 is

(A) (1, 1) (B)
1

,1
2

 
 
 

(C)
1 1

,
2 2

 
 
  (D) not possible

15. The function f(x) = 2

2x 1 , x Q

x 2x 5 , x Q

 
   

 is

(A) continuous no where
(B) continuous at every rational point
(C) continuous at irrational points only
(D) continuous exactly at one point

16. Let [x] denotes the greatest integer less than or
equal to x. If f(x) = [x cos x], the f(x) is
(A) continuous at x = 0
(B) continuous in (–1, 0)
(C) discontinuous at x = 1
(D) continuous in (–1, 1)

17. If f(x) = 

4 2

4 2

1 1
sin sin 1

x x
1 1

cos cos 1
x x

       
   
       
   

is to be made

continuous at x = 0, then f(0) should be equal to
(A) 0 (B) 1
(C) 1/3 (D) 1/2

18. If f(x) = 
n
lim
 (1 – sin2 x)n, n N, then

(A) f 4

 
 
   is nearly zero

(B) f 4

 
 
   is equal to 

1

2
(C) f(x) is discontinuous at infinite number of

points
(D) f(x) is a periodic
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19. Let f(x) = 
2n

2m

asin x for x 0and n

bcos x 1 for x 0and m

  
   

 then

(A) f(0–)   f(0+) (B) f(0+)   f(0)
(C) f(0–) - f(0) (D) f is continuous at x = 0

20. f is a continuous function in [a, b]; g is a continuous
function in [b, c]
A function h(x) is defined as
h(x) = f(x) for x  [a, b)

= g(x) for x  (b, c]
if f(b) = g(b), then
(A) h(x) has a removable discontinuity at x = b.
(B) h(x) may or may not be continuous in [a, b]
(C) h(b–) = g(b+) and h(b+) = f(b–)
(D) h(b+) = g(b–) and h(b–) = f(b+)

21. If graph of |y| = f(x) and y |f(x)| is as shown below

a b c d

Y

X

a b c d

Y

X

Then number of points of discontinuity of f(x) in
[a, d] is
(A) 1 (B) 2
(C) 3 (D) 4

22. If x R+ and n N, we can uniquely write x = mn
+ r where m W and 0 r < n. We define x mod
n = r. For example 10.3 mod 3 = 1.3. The number of
points of discontinuity of the function f(x) =
(x mod 2)2 + (x mod 4) in the interval 0 < x < 9 is
(A) 0 (B) 2
(C) 4 (D) none

23. If graph of the function y = f(x) is continuous and

passes through point (3, 1) then 
x 3

n(3f(x) 2)
lim

2(1 f(x))




l

is equal

(A)
3

2
(B)

1

2

(C) –
3

2
(D) –

1

2

24. Let f(x) = the highest power of (
2xu  + u2 + 2u + 3).

Then at x = 2 , f(x) is

(A) continuous (B)
2x

lim


f(x) = –2
(C) discontinuous (D) none of these

25. Let f(x) = [sin x + cos x], 0 < x < 2, (where [.]
denotes the greatest integer function) Then the
number of points of discontinuity of f(x) is
(A) 6 (B) 5
(C) 4 (D) 3

26. If , ( < ) are the points of discontinuity of

the function f(f(f(x))) where f(x) = 
x1

1


, then

the set of values of ‘a’ for which the points ()
and (a, a2) lie on the same side of the line x + 2y
– 3 = 0, is

(A) 





 1,

2

3
(B) 



 1,

2

3

(C) [1, ) (D) 




 

2

3
,

27. Let f : (0, ) R be a continuous function such

2

f(x)
2 3

x
   for all x > 0. Then with certainity

f(c) = c for atleast one point ‘c’ belonging to the
interval (s)

(A) 
1

, 1
2

 
 
  (B) 

1 1
,

3 2
 
 
 

(C) 
1 1

,
8 4

 
 
  (D) 

1
, 1

4
 
 
 

28. If f(x) = sgn(sin2x – sinx – 1) has exactly four points
of discontinuity for x (0, n), n  N then
(A) the minimum value of n is 5
 (B) the maximum value of n is 6
(C) there are exactly two possible values of n
(D) none of these

29. 2n

n

1
f(x) lim sin ( x) x

2 

      
, where [.]

denotes the greatest integer function is

(A) Continuous at x = 1 but discontinous at x=
3

2

(B) Continuous at x = 1 and x = 
3

2
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(C) Discontinuous at x = 1 and x = 
3

2

(D) Discontinous at x = 1 but continuous at x =
3

2
30. If f(x) is a continuous function  x  R and the

range of f(x) = (2, 26 ) and g(x) = 





a

)x(f
 is

continuous  x  R (where [.] denotes the
greatest integer function), then the least positive
integral value of a is
(A) 2 (B) 3
(C) 6 (D) 5

31. Let f(x) = 

x

3

axe bsin x
, x 0

x
ccos {x} , x 0

 



  

, where {.}

represents fractional part function, if f(x) is
continuous at x = 0, then the value of c is :

(A)
4

3
(B)

2

3

(C)
1

3
(D) – 1

32. Let f R  R such that f(x) is continuous and
attains only rational values at all real x and

f(3) =4. If a1, a2, a3, a4, a5 are in H.P., then 
n

r r 1
n 1

a a 

  is

(A) f(5). a1a5 (B) f(3). a4a5
(C) f(3). a1a2 (D) f(2). a1a3

33. If  f(x) = 






2x0,2x

0x2,1x2
 and

g(x) = 






4x2,2x

2x4,]x[
 then

(A)  2x
lim  f(g(x)) = 2

(B) f(g(x)) is discontinuous at x = –2
(C) f(g(x)) is not defined at x = 2
(D) none of these

34. The function defined by f(x) = [x2 + e1/(2–x)]–1 when
x > 2 and f(x) = k when x = 2 is continuous in
interval [2, ).  Than k is equal to
(A) 0 (B) 1/4
(C) –1/4 (D) None

35. Let f(x) = 
2

2

sin x , x rational

sin x , x irrational





.

Then set of points where f(x) is continuous -

(A) 





 


 In,

2
)1n2(

(B) null set
(C) {n, n  I}
(D) set of all rational numbers

36. If the graph of the continuous function y = f(x)
passes through (a, 0), then

x a
lim
  

2ln(1 6f (x) 3f(x)

3f(x)

 
 is equal to

(A) 1 (B) 0
(C) – 1 (D) None

37. Let f be a continuous function on R such that f

n

1

4
 
 
   = (sin en) 

2ne + 
2

2

n

n 1
.  Then f(0) is equal to

(A) 0 (B) 1
(C) 2 (D) none

38. Let f(x) = [tan x[cot x]], x  ,
12 2

  
   (where [.]

represents the greatest integer function) then the
number of points, where f(x) is not continuous is
(A) one (B) zero
(C) three (D) infinite

39. If f : R  R and g : R  R such that

f(x)=
0 if x rational

1 if x irrational




; g(x) =
0 if x irrational

1 if x rational




then
(A) f + g is discontinuous
(B) f + g is continuous at rational only
(C) f + g is continuous everywhere
(D) f + g is continuous for irrationals only

40. Let f(x) = g(x) 
1/x 1/x

1/x 1/x

e e

e e








 and x  0, where g is a

continuous function.  Then 
x 0
lim
  f(x) exists if

(A) g(x) is any polynomial
(B) g(x) = x + 4
(C) g(x) = x2

(D) g(x) = 2 + 3x + 4x2

41. The point of discontinuity of the function

f(x) = 
n
lim


2n

n 2n

(2sin x)

3 (2cosx)
 is
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(A) n ± /3; n I (B) n ± /6; n  I
(C) 2n; n  I (D) none of these

42. The set of all points of discontinuity of the

function f(x) = 
tan x log x

1 cos4x
 
    contains

(A) 





 


In;

2

n
(B) 






 


Qn;

2

n

(C) (–, 0]  





 


Nn;

2

n

(D) none of these
43. Let f(x) = sin x if x is rational and f(x) = 1 – 2 cos x

if x is irrational then
(A) f(x) is no where continuous
(B) f(x) is continuous at one point only
(C) f(x) is injective
(D) f(x) is continuous at infinite no. of points

44. The function f(x) is defined by

f(x) = 
2

(4x 3)

3
log (x 2x 5) if x 1& x 1

4
4 if x 1


     

 

(A) is continuous at x = 1
(B) is discontinuous at x = 1 since f(1+) does not

exist though f(1–) exists
(C) is discontinuous at x = 1 since f(1–) does not

exist though f(1+) exists
(D) is discontinuous since neither f(1–) nor f(1+)

exists.
45. The function f defined by

f(x) = 
t

tt

(1 sin x) 1
lim

(1 sin x) 1

   
 

   
 is

(A) everywhere continuous
(B) discontinuous at all integer values of x
(C) continuous at x = 0
(D) none of these

46. The function f : R /{0}  R given by

f(x) = 2x

1 2

x e 1



 can be made continuous at

x = 0 by defining f(0) as
(A) 2 (B) –1
(C) 0 (D) 1

47. If f(x) = 
1 | x |

, x 1
1 x

1 , x 1

  


  
, then f([2x]) is where

[ ] represent greatest integer function
(A) continuous at x = –1
(B) continuous at x = 0
(C) discontinuous at x = 1/2
(D) all of these

48. Let f(x) = 
1 , x 0
0 , x 0
1 , x 0

  
 

 and g(x) = sin x + cos x, then

points of discontinuity of f{g(x)} in (0, 2) is

(A) 





 

4

3
,

2  (B) 





 

4

7
,

4

3

(C) 





 

3

5
,

3

2
(D) 






 

3

7
,

4

5

49. The value of ‘a’ for which the function
3

2

2x , x 2
f(x)

ax , x 2

 
 


 

sin x
4 , x 0

g(x) x
a 2 x, x 0

  
  

 and

2 2x a
, x a

h(x) x a
8 , x a

 
 

 
are all continuous is
(A) 2 (B) 4
(C) no value of a exists (D) none of these

50. The set of all points of discontinuity of the

function f(x) = 
tan xlogx

1 cos4x
 
  

 contains

(A) 





 


In,

2

n
(B) 






 


Qn,

2

n

(C) (–, 0]  





 


Nn,

2

n

(D) none of these

51. Let f (x) = 






irrationalisxif,x5

rationalisxif,0
.

Then
(A) f (x) is continuous at every rational number.
(B) f (x) is continuous at every irrational number.
(C) f (x) is discontinuous everywhere.
(D) f (x) is continuous only at x = 0.

52. Let 
4x

18x9x2x
)x(R

4

23




Which of the following statements describes the
graph of y = R(x) :
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(A) The graph has two vertical asymptotes
(B) The graph has two holes in it
(C) The graph has one hole and one vertical

asymptote
(D) The graph has neither holes nor asymptotes

53. Given that  


n

1n
n2

xcos  = 








n
n

2
xsin2

xsin
.

Let  f (x) = 

 n

n nn
n 1

1 x
lim tan , x (0, )

22 2

2
, x

2




        


  



Then which one of the following alternative is
true?
(A) f(x) has non-removable discontinuity of finite

type at x = 
2


.

(B) f(x) has missing point discontinuity at x = 
2


.

(C) f(x) is continuous at x = 2


.
(D) f(x) has non-removable discontinuity of

infinite type at x = 2


.

54. The value of  f(0) such that  f(x) = 
2 16

2 1

24 


x

xcos
is continuous at  x = 0 is :
(A) 1/64 (B)  1/64
(C) 1/32 (D)  1/32

55. Consider

f(x) = 
 
 

3 3

3 3

2 sin x sin x sin x sin x

2 sin x sin x sin x sin x

   
 

    
 ,

x  

2

   for   x  (0, )

f(/2) = 3 where  [.]  denotes the greatest integer
function then,
(A) f is continuous & differentiable at  x = /2
(B) f is continuous but not differentiable at

x = /2
(C) f is neither continuous nor differentiable at

x = /2
(D) none of these

56. Given f(x)  = b ([x]2 + [x]) + 1 for  x  1
= [sin ((x+a) ) ] for   x < 1

where [x] denotes the integral part  of x, then for what
values of a, b the function is continuous at  x = 1?
(A) a = 2n + (3/2) ;   b  R ;   n  I (B)
a = 4n + 2 ;  b  R ;   n  I
(C) a = 4n + (3/2) ;  b  R+  ;   n  I
(D)  a = 4n + 1 ;   b  R+  ;   n  I

57. The function  f(x) = 
[ ] [ ]

sin

x x x for x

x for x

  







0

0
  is

(A) continuous only for all non-negative integers
(B) continuous only for all positive integers
(C) discontinuous only for all negative integers
(D) cont. for all real numbers .

58. The function  f(x) = 
4

4

2

3





x

x x
  is  :

(A) discontinuous at only one point
(B) discontinuous at exactly two points
(C) discontinuous at exactly three points
(D) none

59. Let f(x)=
2

tan kx
for x 0

x
3x 2k for x 0

 
  

.If f (x) is continuous

at x = 0 then the number of values of k is
(A) more than 2 (B) 1
(C) 2 (D) none

60. If f(x) = 
n
lim
  x tan–1 (nx) ; then f(x) is

(A) continuous at x  I
(B) discontinuous at x  I
(C) continuous at all x  R
(D) none of these

61. If  f (x) = 3 + 

1

x1
1

71
















  then

(A)
x 1
lim f(x) 4




(B)
x 1
lim f(x) 3




(C)
x 1
lim f(x) 5




(D) f has irremovable discontinuity at x = 1
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62. Let f(x) = 
0, x 1

2x 2, x 1


  

. The number of solutions
of the equation f(f(f(f(x)))) = x is
(A) 2 (B) 4
(C) 5 (D) None

63. The function 
x 2(3 1)

sin x . n (1 x)


l

 is not defined for

x = 0  for the function to be continuous at the
point  x = 0, f(0) must have the value :
(A) e3 (B) 1
(C) (ln 3)2 (D) none

64. The value of  f(0) so that the function

f(x) = 
4 2 4 2

2 2

2 2    

  

x x x x

x x
is continuous at  x = 0  is :
(A) 2 (B) 1
(C)  2 (D) 2 2

65. If f(x) = 
3

sin|x|

sin|3x|

log cos x
x

log cos
2

 , |x|<
3


 , x  0 = 4 , x = 0

then the number of points of discontinuity is
(A) 0 (B) 1
(C) 2 (D) 4

66. Which one of the following functions defined
below are discontinuous at the origin?

(A) f (x) = 
1
xx cos if x 0

0 if x 0

 
 

(B) g (x) = 

8 4 2x x 2 x
sin x if x 0

0 if x 0

  

 

(C) h (x) = 
1
xsin x . cos if x 0

0 if x 0

 
 

(D) l(x) =  
4 8x x 2 x

tan x if x 0

0 if x 0

  

 

67. If f(x) = 






2x0,2x

0x2–,1x2
 and

g(x) = 







4x2–,2x

2–x4–,]x[
 then

(A) 2)}x(g{flim
2–x




(B) f(g(x)) is discontinuous at x = – 2
(C) f(g(x)) is not defined at x = 2
(D) None of these

68. The number of points of discontinuity of
f(x) = [4x] + {3x} in x  [0, 5] is
(A) 20 points (B) 25 points
(C) 30 points (D) 35 points

69. Let f(x) = [tan2x][cot2x] where [.] denotes greatest
integer function then number of points at which
function f(x) is discontinuous in (0, 2)
(A) 0 (B) 3
(C) 4 (D) 7

70. h(x) is not a constant function and  
x c
lim h(x)


exists finitely for all values of c  R (where [.]
denotes greatest integer function), then which of
the following statement is true ?

(A)  
x c x c
lim h(x) [lim h(x)],
 

   c  R
(B) h(x) can not take any integral value
(C) h(x) can take maximum two integral values
(D) None of these

MULTIPLE CORRECT ANSWER TYPE

71. If f(x) = [x2] + [x]2, then (where [.] denotes greatest
integer function
(A) f(x) is discontinuous at x = 2
(B) f(x) is continuous at x = 51/4

(C) f(x) is continuous at x = 31/5

(D) f(x) is discontinuous at x = 0

72. Given the function f(x) = )x1(

1

 , the points of

discontinuity of the composite function y = f3n(x),
where fn(x) = fof... of (n times) are
(A) 0 (B) 1
(C) 3n (D) 2

73. Let f (x) = 
1

x x[x] if x 0
x

0 if x 0

       
 

   where [x]

denotes the greatest integer function, then the
correct statements are
(A) Limit exists for x = – 1.
(B) f (x) has a removable discontinuity at x = 1.
(C) f (x) has a non removable discontinuity at x = 2.
(D) f (x) is discontinuous at all positive integers.
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74. Let f (x) = 
2n 1 2

2nn

x ax bx
lim

x 1





 


. If f (x) is

continuous for all x  R then
(A) a = 0 (B) b = 0
(C) a = 1 (D) b = 1

75. Which one the following function(s) is/are
continuous  x  R

(A) xsin2  + 3 (B)
3e

1e
x

x




(C)
7/5

x3

x2

52

12











(D) 1xsgn 

76. Which the following equations have roots ?
(A) cos x – x + 1 = 0
(B) x5 – 18 x + 2 = 0,  x [–1, 1]
(C) x2x = 1,  x (0, 1)
(D) x3 – 3x + 1 = 0,  x [1, 2]

77. f(x) = x4 – 14x3 + px2 + qx – 105
g(x) = x4 + ax3 + bx2 + cx + 105
the smallest root of f(x) = 0 is  and remaining
root are in A.P. If the smallest root is increased
by 2 then equation becomes g(x) = 0 function

F(x) = 
f(x)

g(x)  then

(A) Domain of F(x) is R – {1, 3, 5, 7} and range is

R – {1, 2, 
3 3

,
2 4

}

(B) Function F(x) is bijective
(C) Function F(x) has removable discontinuities

at x = 3, 5, 7
(D) Function F(x) has irremovable discontinuity

at x = 1
78. Let f(x) and g(x) be defined by f(x) = [x] and

g(x) = 2

0 , x I

x , other wise





, where [ . ] denotes

greatest integer function. Then
(A) gof is continuous for all x R
(B)

x 2
lim
 . fog(x) = 3

(C) fog is continuous for all x  R
(D)

x 5
lim


. fog(x) = 5

79. If  f(x)=cos 
x

 
    cos (x 1)

2

  
 

 where  [x] is the

greatest integer function of x, then f(x) is continuous at
(A) x = 0 (B) x = 1
(C) x = 2 (D) none of these

80. Which of the following statement(s) is/are correct?
(A) Let f and g be defined on R and c be any real

number. If x c
lim f (x)
 = b and g (x) is

continuous at x = b then 
x c
lim


g(f(x)) = g (b).

(B) There exist a function f : [0, 1]  R which is
discontinuous at every point in [0, 1] and |f(x)|
is continuous at every point in [0, 1].

(C) If  f (x) and g (x) are two continuous function
defined from R R such that f (r) = g (r) for
all rational numbers 'r' then f (x) = g (x)  x R.

(D) If  f (a) and f (b) possesses opposite signs
then there must exist atleast one solution of
the equation f (x) = 0 in (a, b) provided f is
continuous in [a, b].

81. If  f (x) = 2

2

sinax
, x 0

bx
ax 1 , 0 x 1

cx 2 , 1 x 2

d(x 4)
, 2 x 4

x
12 , x 4

 
      
 

 

 

is continuous  x  R then which of the following
hold good?
(A) d = 4c (B) a  b

(C) a + b + d = –3 (D) a + b + c + d = – 2
5

82. The function defined as

f (x) = 
n
lim


2n

n n

n

cos x if x 0

1 x if 0 x 1
1

if x 1
1 x

 


  


 

 .

Which of the following does not hold good?
(A) continuous at x = 0 but discontinuous at x = 1
(B) continuous at x = 1 but discontinuous at x = 0
(C) continuous both at x = 1 and x = 0
(D) discontinuous both at x = 1 and x = 0

83. Which of the following functions defined below
are continuous for every x  R ?

(A) f (x) = 
sin x

if x 0
x

x 1 if x 0

 
  
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(B) g (x) = 
2 1

x sin if x 0
x

0 if x 0

 
 

(C) h (x) = sin | x |
(D) k (x) = |1 – x + | x ||

84. Which of the following functions is/are
continuous  x  R ?
(A) f (x) = cos(x2 – 2)

(B) f (x) = 
xsin1

x
2

(C) f (x) = 

2sin x
, if x 0

x
0 if x 0

 

 

(D) f (x) = 
sin 2x

, if x 0
sin 4x
2 if x 0

 

 

85. Which of the statement(s) is/are incorrect?
(A) If  f + g  is continuous at x = a, then f and g are

continuous at x = a.
(B) If 

x a
lim (f g)


exists, then 
x a
lim f


and 
x a
lim g


both exists.
(C) Discontinuity at x = a non existence of limit
(D) All functions defined on a closed interval attain

a maximum or a minimum value on that interval.

86. Let  f (x) = 
1tan (1 x) if x 0

1 if x 0

 
 

then which of the following do/does not hold
good?
(A) f  is continuous on (– , 0)  (0, ).
(B) f  has a non removable discontinuity of finite

type at x = 0.
(C) f  has a non removable discontinuity of

oscillatory type at x = 0.
(D) f  has a non removable discontinuity of infinite

type at x = 0.
87. Let f(x) and g(x) be defined by f(x) = [x] and

g(x) = 2

0 , x I

x , other wise





, where [ . ] denotes

greatest integer function. Then
(A) gof is continuous for all x R
(B)

x 2
lim


. fog(x) = 3

(C) fog is continuous for all x  R
(D)

x 5
lim


. fog(x) = 5

88. The function
f(x) = max ({x}, {–x}), x  (–, ) is
(A) continuous  every where
(B) continuous at x = 0
(C) continuous for all x = n + h where n ,

h  = 1/2
(D) continuous every where except all x 

89. f(x) is continuous at x = 0, then which of the
following are always true ?

(A)
x 0
lim
  f(x) = 0

(B) f (x) is non continuous at x = 1
(C) g(x) = x2 f(x) is continuous at x = 0

(D)
x 0
lim


 (f(x) – f(0)) = 0

90. The function f(x) = 

[x] [x]

x

e e
, x 0

e
sin{x}

, x 0
{tan x}

2 , x 0

 



 




,

where [ . ] and { . } represent greatest integer and
fractional part functions respectively, is
(A) continuous at x = 0
(B) discontinuous at x = 0

(C) continuous at x = 
6



(D) discontinuous at x = 
4



Assertion (A) and Reason (R)
(A) Both A and R are true and R is the correct

explanation of A.
(B) Both A and R are true but R is not the correct

explanation of A.
(C) A is true, R is false.
(D) A is false, R is true.

91. Let g(x) = 
1 / x * x 0

0 x 0

  
 

, where <r>* is the
distance from x to the integer nearest to x then
Assertion (A) : g is discontinuous at x = 0

Reason (R) : Let xn = 1/n and x'n = 
2

2n 1
;

g(xn) = <n>* = 0,  g(x'n) = 
*2n 1

2



= <n + 1/2>* = 1/2
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92. Consider the function f(x) = 
x{x} 1 0 x 1

2 {x} 1 x 2

  
   

where {x} denotes the fractional part function.
Assertion (A) : f(x) is continuous in [0, 2]

Reason (R) : 
x 1
lim
  f(x) exists

93. Assertion (A) : The function  | ln x |  and  ln x  are
both continuous for all x > 0.
Reason (R) : Continuity of  | f (x) | Continuity
of  f (x).

94. Assertion (A) : If f(x) is a continuous function
such that f(0) = 1 and f(x)  x,  x  R, then f(f(x)) > x.
Reason (R) : If f : R  R, f(x) is an onto function
then f(x) = 0 has atleast one solution.

95. Let  f (x) = cos
1

xcos
x

 
 
 

Assertion (A) : f (x) is discontinuous at x = 0.

Reason (R) : 
x 0
lim f(x)


 does not exist.

96. Assertion (A) : Let f : [0, 1]  R be a continuous
function. There cannot exist such a function f
which crosses the x axis infinitely often.

Reason (R) : The function f(x) = 

1
xsin , x 0

x
0, x 0

 

 

crosses the x-axis infinitely often.
97. Assertion (A) : Let f(x) = x2 + x4 + x6 + x8 + ....., for

all real x such that the sum converges. The number
of fixed points of the function is two.

Reason (R) : Since f(x) = 
2

2

x

1 x
, f(x) = x

 x2 + x – 1 = 0. This gives two values of x.
98. Consider the functions

f(x) = sgn (x – 1) and g(x) = cot–1[x – 1]
where [ . ] denotes the greatest integer function.
Assertion (A) : The function F(x) = f(x) . g(x) is
discontinuous at x = 1.
Reason (R) : If f(x) is discontinuous at x = a and
g(x) is also discontinuous at x = a then the product
function f(x) . g(x) is discontinuous at x = a.

99. Let  f (x) = sgn x  and  g (x) = 2

x 1 0 x 2

1 x 2 x 4

  
   

,

then

Assertion (A) : The function (fog)(x) is continuous
at x = 2.
Reason (R) : If (fog) (x) is continuous at x = a  then
g (x) is continuous at x = a and f (x) is continuous
at  x = g(a).

100. Assertion (A) : f (x) = [1 + cos x] where [x] denotes
greatest integer function is discontinuous at x = 
Reason (R) : f (x) = [x] where [x] denotes greatest
integer function is discontinuous at all integers.

Comprehension - 1

If f(x) = maximum 
1

cosx, ,{sin x}
2

 
 
 

, 0   x   2, where

{ . } represents the fractional part function, then
101. The number of points where f(x) is equal to 1/2 is

(A) 1 (B) 2
(C) 4 (D) infinite

102. The number of points of discontinuity of f(x) is
(A) 1 (B) 2
(C) 3 (D) 4

103. The number of points where f(x) has non-
removable discontinuity is
(A) 0 (B) 1
(C) 2 (D) 3

Comprehension - 2
A strictly monotonic polynomial function

f : (0, )  (0, ) is such that f
2x

f(x)

 
 
 

  x.

104. If f(1) = 2 then the value of f(2) is
(A) 8 (B) 4
(C) 16 (D) None

105. The number of fixed points of f (i.e. number of
solution of f(x) = x) is
(A) 3 (B) 2
(C) 1 (D) None

106. If nx 1

ln f(x) ln f(1)
lim

sin x




 exists with nonzero value,

then the value of n is
(A) 1 (B) 2
(C) 3 (D) None

Comprehension - 3

Define f : R R by f(x) = x2 + 1 for –1 < x   1 and

f(x + 2) = 
1

f(x)  for all x R.
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107. The fundamental period of the function f(x) is
(A) 2 (B) 4
(C) 8 (D) None

108. x 1
lim

 f(x) is equal to

(A)
1

3
(B)

3

4

(C)
1

2
(D)

5

12
109. The number of points of discontinuity in the

function y = f(x) over the interval [0, 4] is :
(A) 0 (B) 1
(C) 2 (D) 3

Comprehension - 4

Consider a  R+, f(x) = | x – a |

g (x) = 

x
f(x)sec for x a

2a

x
x acot cosec(f(x)) for

2a

      
       

h (x) = 
n
lim


n
n

x
2 sin

2
  
  
  

110. The value of g(a) so that g is continuous at x = a

(A) is –
2a


(B) is 

a

2
(C) is 1 (D) can not be determined

111. The number of possible ordered pairs (a, g ( a ) ) is
(A) 0 (B) 1
(C) 2 (D) more than 2

112. If 
x a
lim


6

(x a)sin(2x 2a)(cos(x a))    = e–kh([a]) then k
equals
(where [ .] denotes greatest integer function)
(A) 0 (B) 2/3
(C) 3/2 (D) 6

Comprehension - 5
Let the Heaviside step function be defined as

H(x) = 1 , x 0
0 , x 0




113. The solutions of the equation x2 – x + H(x) – 2
= 0 are
(A) {–1, 2} (B) {– 2 , –1, 2}

(C) {± 2 , – 1, 2} (D) {– 2 , 2}
114. The solution set of the inequality H(1 – x2) > |sin

/2 x| is

(A) ,
2 2

   
  (B) ,

2 2

    

(C) R ,
2 2

   
  (D) None of these

115. The number of points of discontinuity in the
function y = H(cos 2x), x  [0, 2] is
(A) 4 (B) 5
(C) 6 (D) None

116. Column - I Column - II

(A) If f(x) = 
2

1 3cosx
, x 0

x

b tan , x 0
[x 3]

 
       

 is continuous at x = 0, (P) |a + b| = 0

then (where [ . ] denotes the greatest integer function)

(B) If f(x) = 

2sin x, x
2

asin x b, x
2 2

cosx, x
2

     


     


   

 is continuous in [– ],then (Q) |a – b| = 2
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(C) If f(x) = 

(cos3x)/(cot 2x)

a|tan x|

b

3
, 0 x

2 2

b 3 , x
2

(1 | cosx |) , x
2

 
 
 

       
 

 

 

   


(R) [a – 2b] = –2

is continuous at x = 
2


, then

(D)  If f(x) = 

3

sin[x]
a , x 0

x
2, x 0

sin x x
b , x 0

x

  



       

(S) |a + 2b| = 4

(where [.] denotes the greatest integer function), (T) |a – b| = 1
is continuous at x = 0, then b is equal to

117. Column – I Column – II

(A) Given f(u) = 2

1

u u 2 
, where u = 

1

x 1
, then f(x) is (P) continuous at x = 0

(B) If f(x) = sgn x (1 – x2), then f(x) is (Q) discontinuous at x = 1, 1/2, 2

(C) If 
x 0

f(x)
lim

x
 exists and f(0) = 0, then f(x) is (R) discontinuous function

(D)  The function f(x) = 
n

nx sgn xlim
1 n




 is (S) discontinuous at x = 2

119. Column - I Column - II
(A) The number of natural numbers less than the (P) 1

fundamental period of sin2x + sec2x – tan2 x is
(B) The number of points of discontinuity of the function (Q) 2

f(x) = [x] + {2x} + [3x] for x  [0, 1], where [ . ] and
{ . } represent greatest integer and fractional part functions is

(C)
x 0

sin x(1 cosx)
lim

xcosx

 
   , where [ . ] represents (R) 3

greatest integer function, is equal to

(D) The number of solutions of the equation (S) 4

sin–1 x – 2 cos–1 (1 + x) = 0 is

120. Column-I Column-II
(A) In a ABC maximum value of cos2A + cos2B + cos2C, is (P) 3/4
(B) If a, b are c are positive and 9a + 3b + c = 90 then

the maximum value of  (log a + log b + log c) is (Q) 2
(base of the logarithm is 10)
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(C) 3x 0

tan x tan x sin x sin x
lim

x · x


 equals (R) 3

(D) If  f (x) = cos(x cos x
1

) and g (x) = 
xsinx

)x(secn 2l
 are (S) non existent

both continuous at x = 0 then  f (0) + g (0) equals

121. Column I Column II

(A) If f(x) = 
xsinn1

1lim
2n  , then (P) f(x) is continuous  x  R

(B) If f(x) = n2n )xsin4(1
xlim

 , then (Q) f(x) is discontinuous at x = 1

(C) If h(x) = 











 1x
bxaxxlim

n2

21n2

n
 is continuous (R) f(x) is discontinuous at

 x  R, and f(x) = [tan(a + b – 1)x], then x = 2n+
6


(D) If f(x + y) = f(x). f(y), x, y  R and (S) f(x) is continuous at x = 
6

5

f(x) = 1 + g(x).G(x); 0)x(glim
0x


  and

)x(Glim
0x  is finite real number, then

1. Test the continuity of the function

f(x) = 
1

x [x]
2

  
  , in the interval –2  x  2. Also

draw the graph of y = f(x), where [.] denotes greatest
integer function.

2. Discuss the continuity of the function f(x) = [[x]] –
[x – 1], where [·] denotes the greatest integer
function.

3. Let f(x) be defined in the interval [–2, 2] such that
 f(x) = 1, –2  x  0

       = x – 1, 0 < x  2
and g(x) = f(|x|) + |f(x)|.Test the continuity of g(x) in
[–2, 2].

4. If f(x) be defined as

f(x) = 

sin x
, x 0

x
1 xcosx, x 0

 

  

then discuss the continuity y = [f(x)] in 



 


2

3
,

2
where [.] denotes G.I.F.

5. Let f(x) = 
2

x2

 + 1. 0  x < 1

= 2x2 – 3x + 
2

3
, 1  x  2.

Discuss the continuity of g(x) = f(x) + f(x – 1).
6. Discuss the continuity of the function

f(x) = n

n

n )xcos1(2

nx5)xcos1(
lim








7. Let fn(x) = cosn x and g(x) = 
x

lim  








n

0k
k 4

xf .  If

g(x) is continuous is (0, c), then find the largest
value of c.

8. Examine the function f defined on R by setting

f(x) = x/

x/

e

)x/sin(e
1

1

1
1


, when x  0,  f(0) = 0

for points of discontinuity, if any.
9. Examine each of the following functions for points

of discontinuity and the nature of discontinuity :
(i) f(x) = (x – [x])2, for all x  0
(ii) f(x) = [x] + (x – [x])2, for all x  0
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10. If the function

f(x) = 






 
a

)2x( 3

sin(x–2) + a cos(x–2) where [.]

denotes the greater integer function, is continuous
in [4, 6] , then find the values of a.

11. Find the value of a & b for which

f(x) = 

cosec x

1/x 2/x 3/|x|

3/x 3/|x|

(sin x cosx) , 1 / 2 x 0
a , x 0

e e e
, 0 x 1 / 2

ae be


    
 
  

 
 

is continuous at x = 0.

12. Prove that the function f(x) = 

2x, –1 x 0
2x 1

, 0 x 1
2

 
  

is discontinuous at x = 0 but still has both maximum
and minimum values on [–1, 1].

13. Let f(x) = 

ì
ï <
ï +ï

=í
ï
ï >ï
î

1/x
n

1/x

n

e
x , x 0

1 e
0 , x 0

1
x sin , x 0

x

 .  Find the smallest

n  W such that f(x) is continuous.

14. If f(x) = 
2

2

x ax 1 , x Q

ax 2x b, x Q

   


  
  is continuous at x

= 1 & e then a & b.

15. Let f(x) = 
2

x

x

e
  ,g(x) = 

2 ln x
x .  Prove that there exist

a point ‘c’ between 1 and e such that f(c) = g(c).
16. Prove that, if f(x) is continuous on (a, b) and x1, x2,

......... xn are some values of x from this interval,
then we can find x = c, c (a, b) such that f(c)
=  (1/n) [f(x1) + f(x2) + .............. + f(xn)].

17. Let f(x) = | x 1| , x 0
x , x 0
 

  ;

g(x) = | x | 1 , x 1
| x 2 | , x 1
 

   .

Discuss the continuity of f + g.

18. Let f(x) = 






2x0,2x

0x2–,1x2
 and

g(x) = 







4x2–,2x
2–x4],x[

Discuss the continuity of fog(x) over its domain.
19. Discuss the continuity of f : R+ R defined as :

f(x) = x when x is irrational, 

2/1

2

2

q1

p1
)x(f 














when x is rational number of the form p/q.
20. Use the Intermediate Value Theorem to show that

there is a right circular cylinder of height h and
radius less than r whose volume is equal to that of
a right circular cone of height h and radius r.

21. Use Intermediate Value Theorem to locate all

discontinuties of the function f(x) = 3

x

x 3x 1 
.

22. Prove that if a and b are positive, then the equation
0

3x
b

1x
a 





 has atleast one solution in the

interval (1, 3).
23. Let f(x) = x(1–x2), x  R and

g(x) = 










0x,0

0x,
x

|x|

Discuss the continuity of (fog) x and (gof) x.
24. Show that any continuous function defined for

all real x and satisfying the equation f(x) = f(2x + 1)
for all x must be a constant function.

25. Let f(x) be a continuous function in [–1, 1] and
satisfies f(2x2 – 1) = 2x f(x)  x  [–1, 1]. Prove
that f(x) is identically zero  x  [–1, 1].

26. If g(x) = 
[f(x)] , x (0, / 2) ( / 2, )

3 , x / 2

    
  

and

f(x)=
|xsinxsin|)xsinx(sin2

|xsinxsin|)xsinx(sin2
nn

nn




, nR

where [.] denotes the greatest integer function.
Prove that g(x) is continuous at x = /2 when n > 1.

27. Prove that the function f(x) = ]x[ 3

)1( , where [.]
denotes the greatest integer function, is
discontinuous for x = n1/3, n  I.

28. Let f be a continuous function in [0, 4] and f(0) =
f(4).  Prove that these exists point x = c [0, 2]
such that f(c) = f(c + 2).
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29. Let f be a function such that f(xy) = f(x) f(y3) for all
x and y. If f(x) is continuous at x = 1, show that f(x)
is continuous at all x  0.

30. If f(x) = 






0x;x
0x|;1x|   and

g(x) = 






1x|;2x|
1x;1|x|

Draw the graph of f + g and discuss its continuity.
31. Let f(x) = x, if x is not the reciprocal of a positive

integer; but f(x) = x2 if x = 1/n for some positive
integer n. Show that f is continuous at x0 = 0. Is f
discontinuous at any point in R?

32. Consider the function f : R R defined by

n2

n2

n x1

xsinx)x2log(
lim)x(f







in the interval [0, /2] and explain why the function
does not vanish anywhere in this interval, although

f(0) and 





 

2

1
f  differ in sign.

33. A continuous function f : R  R satisfies
f(x + f(x)) = f(x)  x  [0, 1]. Prove that f is constant.

34. Let f be a non-zero function whose domain is the
set of all real numbers satisfying
f(x + h) = A f(x) f(h) (A  0). If f(0)  0, and f
is continuous at x = 0 then show that f is a
continuous function.

35. Let f be a continuous function on R. If

f(1/3n) = (cos en) 
1nn

n
3

2

2
n2


 then find f(0).

1. Let f(x) = 2

1 , | x | 1
1 1

, | x |
nn

0 , x 0








<

1

n 1
 , n = 2, 3,..... prove

that f(x) is discontinuous at infinitely many points.

2. Let f (x) = 

1/x 1/x

ln sin 2x
sin x

(1 x) (1 x)
, 1 x 0

x
e, x 0

(log sin 2x) , 0 x 1

   
  

 
  



Examine the continuity of f(x) at x = 0.
3. Let f(x) = x3 – 9x2 + 15x + 7, and

g(x) = 
(min f(t) : 0 t x), 0 x 6

x – 24 , x 6

   
 

Draw the graph of g(x) and discuss the continuity
of g(x).

4. Discuss the continuity of the function

 f(x) = 























1x,3

0x,
3

1

0x,
|xx|)xx(2

|xx|)xx(2
33

33

 at x = 0,1.

5. Let f(x) = x when x is rational
       = 1–x when x is irrational.

Show that f(x) assumes every value between 0 and
1 once and once only as x increases from 0 to 1, but

is discontinuous for every value of x except x = 
2

1
.

6. Let f be a continuous functions on [–1, 1] such
that (f(x))2 + x2 = 1, for all , x  [–1, 1]. Show that
either f(x) = 2x1  for all x in [–1, 1] or f(x) =

– 2x1  for all x in [–1, 1].

7. Let yn(x) = x2+
2

2

x

1 x
+

2

2 2

x

(1 x )
+....+

2

2 n 1

x

(1 x ) 
and y(x) = 

n
lim
  yn(x)

Discuss the continuity of yn(x)(n = 1, 2, 3,.....n)
and y(x) at x = 0

8 Show that the function

f(x) = 
2

1
 – x + 

2

1
[2x]–

2

1
[1 – 2x] assumes every

value between 0 and 1 once and once only as x
increases from 0 to 1, but is discontinuous for

x = 0, x = 
2

1
 and x = 1.

9. Let I be a closed and bounded interval on the line
and let f be continuous on I. Suppose that for
each x  I, there exists a y  I such that

|f(y)| 
2

1
 |f(x)|.

Prove the existence of a t  I such that f(t) = 0.
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10. Let f : R  R be a continuous function such that

x
lim

 f(x) = 0 = x
lim
  f(x). Prove that if f is strictly

negative somewhere on R then f attains a finite
absolute minimum on R, and that if f is strictly
positive somewhere on R then f attains a finite
absolute maximum on R.

11. Let f : [0, 1]  [0, 2] be continuous. Show that
there exists a point x  [0, 1] such that f(x) = 2x.

12. Let R]1,0[:f   be a continuous function such
that f(0) = f(1), then  prove  that  there  is a solution

of the equation f(x) – 





 

n
1xf = 0,  in 

n 10,
n
 

  
for every natural number n .

13. How many continuous functions are there on R
which satisfy (f(x))2 = x2 for all x  R ?

14. Let f be continuous on [a,b], let f(x) = 0 for exactly
one c in [a, b] and let f(x) > 0 for some x such that
c < x  b and let f(x) < 0 for some x such that a  x
< c. What can we say about f for all x in [a,b].

15. Let f be a function that satisfies the conclusion of
the intermediate value theorem on a closed interval
I and let f be injective on I then prove that f must
be continuous on I.

16. A function f is said to satisfy a Lipschitz condition
on a given interval if there is a positive constant
M such that  |f(x) – f(y)| < M | x – y |.
for all x and y in the interval (with x  y). Suppose
f satisfied a Lipschitz condition on an interval and
let c be a fixed number chosen arbitrarily from the
interval. Use limit to prove that f is continuous  at c.

17. Find the points of discontinuity of the function
f : (0, )  R where

f(x) =
1 pif x Q (0, ),x= in lowest terms

p q q
0 if x (0, ) Q

ì
Î Ç ¥ïï

+í
ï

Î ¥ -ïî

18. Let f, g be continuous function from [0, 1] to
[0, 1] such that
f(g(x)) = g(f(x))  x  [0, 1].
Prove that f and g have a common fixed point in
[0, 1].

19. Let f be a function such that |f(u) – f(v)|  |u – v| for
all u and v in an interval [a, b].

(i) Prove that f is continuous at each point of [a, b].
(ii) Assume that f is integrable on [a, b] prove

that 
2

b

a

(b – a)f(x)dx – (b – a)f(a)
2

£ò
(iii) More generally, prove that for any c in [a, b],

we have 
2

b

a

(b – a)f(x)dx – (b – a)f(c)
2

£ò
20. Let f be continuous and strictly monotonic on the

positive real axis and let g denote the inverse of f.
If a1 < a2 < ... < an are n given positive real numbers,
we define their mean value (or average) with
respect to a f to be the number Mf defined as follows:

Mf = g 






 


n

1i
i )a(f

n

1

Prove that (i) f(Mf) = 


n

i
i )a(f

n 1

1
 (ii) a1 < Mf < an

If h(x) = af(x) + b, a 0, then show that Mh = Mf.

21. If f is a function, then by a chord of f we shall
mean a line segment whose ends are on the graph
of f. Now let f be continuous throughout [0,1] and
let f(0) = f(1) = 0.
(i) Explain why there is a horizontal chord of f of

length 
2
1 .

(ii) Explain why there is a horizontal chord of f of
length 1/n, where n = 1, 2, 3, 4,....

(iii) Must there  exist a horizontal chord of length
2

3
?

(iv) What is the answer to (iii) if it is given that
f(x)  0 for all x in [0, 1]

22. Classify the points of discontinuity of the function
f(x) = pnx, where pnx denotes the positive or
negative excess of x over the nearest integer; when
x exceeds an integer by 1/2 let pnx = 0.

23. Discuss the continuity at x = 1 of the functions :

(i) f(x) = ;
x1

xsinxxlim
n

n

n 




(ii) (x) = n

n

n ax1
xxlim





.

24. If f(x) = 




n

1r
2n n

]rx2[
lim , discuss the continuity of

f(x) where [.] denotes the greatest integer function.
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25. Consider the functions y(x) = sinx and
zk(x) = ke–x. Now define a new function f by
f(k) = {smallest positive solution of y(x) = zk(x)}
Explain why the function f(k) is not continuous
on the interval 0  k 

26. Let f and g be continuous on an interval I, and let
(f(x))2 (g(x))2 = 1 for all x  I. Prove that either f(x)
= 1/g(x) for all x  I or f(x) = –1/g(x) for all x  I.

27. Discuss the following function in the interval
0 < x < 1 for continuity : let x = 0. a1 a2 a3 ... be the
decimal representation of x. Let ak be the first digit
equal to 7. Put f(x) = 0 . a1 a2 .... ak if ak exists and f(x)
= x if no digit equal to 7 occurs.

28. A function f is defined on [0, 1] as follows :

f(x) = n2

1
 when n1n 2

1
x

2

1
  (n  W), f(0) = 0

Show that f is discontinuous at the points

,....
2

1
,

2

1
,

2

1
32

















 and examine the nature of

discontinuity.

29. f(x) = 
sin x tan xa a

tan x sin x




 for > 0

= 
2 2ln(1 x x ) ln(1 x x )

sec x cosx

    


 for x < 0.

If f is continuous at x = 0, find ‘a’.

Now if g(x) = ln 
x

2
a

  
  . cot (x – a) for x   a,

a > 0. If g is continuous at x = a then show that
g(e–1) = –e.

30. Given f(x) = 
n

r
r 1

x
tan

2

 
 
   sec r 1

x

2 
 
 
  ; r, n  N and

 g(x) = n
lim


n

n n

n

n

x x x
n f(x) tan f(x) tan . sin tan

22 2
x

1 f(x) tan
2

                    
   
 

l

= k for x = 
4


 and the domain of g(x) is (0, /2).

where [ ] denotes the greatest integer function.
Find the value of k, if possible, so that g(x) is
continuous at x = /4. Also state the points of
discontinuity of g(x) in (0, /4), if any.

31. Given the function g(x) = 6 2x  and
h(x) = 2x2 – 3x + a. Then
(i) evaluate h(g(2))

(ii) If f(x) = 
g(x), x 1

h(x), x 1


 

, find ‘a’ so that f is

continuous.
32. Let

f(x)=

1 2 1

3

sin (1 {x} ) sin (1 {x})
2 for x 0

2({x} {x} )

for x 0
2

        


 


where {x} is the fractional part of x.
Consider another function g(x); such that
g(x) = f(x) for x   0

= 2 2  f(x) for x < 0
Discuss the continuity of other functions f(x) &
g(x) at x = 0.

33. Let f be the function defined on [0,1] by setting

f(x) = 2rx, when 
r

1
x

1r

1



, r = 1, 2, 3, ....

f(0) = 0,  f(1) = 1.
Examine for continuity the function f at the points

01
3
1

2
11 and,.......,

r
.......,,,, .

34. Let f be defined on R by setting

f(t) = 













11

0

0

2
1

2
1

2
1

tif,t

tif,

tif,t

and f(n+t) = f(t), when n is any integer.
Determine the points of discontinuity of f.

35. Sketch the graph of the function y = f(x), where

f(x) = n

n

n x

xsinx–)xln(
lim 2

2

1
2






in the interval 0  x 
2
1  and explain why the

function does not vanish anywhere in this interval,

although f(0) and 





 

2
1f  differ in sign.
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A. Fill in the blanks:

1. Let f(x) = 

3 2

2

(x x 16x 20)
, if x 2

(x 2)

k, if x 2

   



 

 If f(x) is continuous for all x, then k =.......
[IIT - 1981]

2. A discontinuous function y = f(x) satisfying
x2 + y2 = 4 is given by f(x) =.......... [IIT - 1982]

3. Let f(x) = [x] sin [x 1]

 
   , where [ . ] denotes the

greatest integer function. The domain of f is .......
and the points of discontinuity of f in the domain
are................. [IIT - 1996]

4. Let f(x) be a continuous function defined for 1 x
 3. If f(x) takes rational values for all x and f(2) =
10, then f(1.5) = ............... [IIT - 1997]

B. Multiple Choice Questions with ONE
correct answer:

5. The function f(x) = 
ln(1 ax) ln(1 bx)

x

  
 is not

defined at x = 0. The value which should be
assigned to f at x = 0 so that it is continuous at
x = 0, is [IIT - 1983]
(A) a – b (B) a + b
(C) ln a – ln b (D) none of these

6. The function f(x) = [x] cos 
2x 1

2

 
 
  , [ . ]

denotes the greatest integer function, is
discontinuous at [IIT - 1995]
(A) All  x (B) All integer points
(C) No  x (D) x which is not an

integer
7. The function f(x) = [x]2 – [x2] (where [y] is the

greatest integer less than or equal to y), is
discontinuous at [IIT - 1999]
(A) all integers
(B) all integers except 0 and 1

(C) all integers except 0
(D) all integers except 1

C. Multiple Choice Questions with ONE or
MORE THAN ONE correct answer :

8. If f (x) = (x – 1)/2, then on the interval [0, ]
[IIT - 1989]

(A) tan (f(x)) and 1/f(x) are both continuous
(B) tan (f(x)) and 1/f(x) are both discontinuous
(C) tan (f(x)) and f–1(x) are both continuous
(D) tan (f(x)) is continuous but 1/f(x) is not.

9. The following function are continuous on (0, )
[IIT - 1991]

(A) tan x

(B)
x

0

1
t sin dt

t

(C)

3
1 , 0 x

4
2 3

2sin x, x
9 4

   
    
 

(D)

xsin x , 0 x / 2

sin( x) ; x
2 2

  
      

10. If f(x) = 
xsin x , when 0 x / 2

sin( x) ; when x
2 2

  
      

 , then

[IIT - 1991]

(A) f(x) is discontinuous at x = 
2



(B) f(x) is continuous x = 
2



(C) f(x) is continuous at x = 0
(D) None of these

11. For every integer n, let an and bn be real
numbers. Let function f :    be given by

n

n

a sin x, for x [2n, 2n 1]
f (x) ,

b cos x, for x [2n 1, 2n]
   

     
for all integers n,.

(A) an–1 – bn–1 = 0 (B) an – bn = 1
(C) an – bn + 1 = 1 (D) an–1–bn = –1

[IIT - 2012]
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F. Subjective Problems:
12. Let f(x + y) = f(x) + f(y) for all x and y. If the function

f(x) is continuous at x = 0, then show that f(x) is
continuous at all x [IIT - 1981]

13. Determine the values a, b, c for which the function

f(x) = 
2 1/2 1/2

3/2

sin(a 1)x sin x
, x 0

x
c , x 0

(x bx ) x
, x 0

bx

 





   


is continuous at x = 0 [IIT - 1982]

14. Let f(x) = 
1 x, 0 x 2

3 x, 2 x 3

  
   

;

Determine the form of g(x) = f[f(x)] and hence find
the points of discontinuity of g, If any.

[IIT - 1983]

15. Let f(x) be a continuous and g(x) be discontinuous
function , prove that f(x) + g(x) is discontinuous
function. [IIT - 1987]

16. Find the value of a and b so that the function
[IIT - 1989]

f(x) = 

x a 2 sin x, 0 x / 4

2xcot x b / 4 x / 2

a cos2x bsin x / 2 x

    
     
     

is continuous for 0 x 

17. Let f(x)   = 2

1 cos4x

x


     x< 0

[IIT - 1990]
        = a      x = 0

         = 
x

16 x 4 
            x > 0

Determine the value of a, if possible, so that the
function is continuous at x = 0.

18. Let f(x) = 

a /|sin x|

tan2x/tan3x

{1 | sin x |} ; x 0
6

b ; x 0

e ; 0 x
6

    



 

 


[IIT - 1994]
Determine a and b such that f(x) is continuous at
x = 0.

CONCEPT PROBLEMS—A

2. 1 3. –
8
1

4. a = 0 5. 6
6. (i) 7/3    (ii) /4
7. continuous
8. f(0) = e

PRACTICE PROBLEMS—A

9. discontinuous 10.
6
5

12. 1 13. a = 
6


, b = 

12



14. a = –In 3, b = 
1

3
, c = 1 16. a + b = 0

17. a = 2/3, b = e2/3. 18. 1
19. 1

CONCEPT PROBLEMS—B
1. The tangent  i s  cont inuous everywhere

except at x = 
1

n
2
   , where n is any integer;

the cotangent is continuous everywhere except
at x = n, where n is any integer.

2. (i) x = (2n + 1) 
2


, n  I (ii) ± 1.

4.

5

3

5. No

6. a = (2cosc – b)/c2 if c  0; if c = 0 there is no
solution unless b = 2, in which case any a will do.

7. (i) a = 16  b = 4
(ii) a = 4/3, 14/3, ..... , b = 3
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8. (i) x = Nn,n  , (ii) x = 2n ,n N ,

(iii) x = n , n I , (iv) x = n / 2, n I ,
(v) x I

9. (i) No (ii) No
(iii) f(x)  0 as x  0, define f(0) = 0 for continuity

at 0
10. True
11. (i) discontinuous at 0, left continuous

(ii) discontinuous at 0, right continuous;
discontinuous at 1; left continuous.

12. (i) a + b + 1 = 0 (ii) a = 3/2 + 2n.
13. (i) 0 (ii) n/2, n I.
14. (i) 1 (ii) 0

(iii) yes, define f(0) = 0
15. R
16. (i) Discontinuities at x = 0 and x = 




2
, 




3

2
,.....,




)1n2(

2
,......  n I.

(ii) Discontinuities at x = –2, –1, 0, 2
(iii) f(x) is discontinuous at x I .

PRACTICE PROBLEMS—B
17. a = 8

18. {1, 
3

2
, 

5

2
, e, 3 , 10 , 11 , 12 , 3.5 }

21. x  [0, 1)  [2, )
22. 12, 4, 2
23. No

24. all x  R except x = n + 
4


, n  I

25. (i) 3 (ii) dne
(iii) no (iv) at x = n + 1/2, n 

26. Discontinuous at x = n
3


,  n I.
27. Discontinuous at all integral values in [–2, 2]
28. Continuous on R.
29. a = 0 , b = 1
30. discontinuous at x = 0.

CONCEPT PROBLEMS—C
1. isolated point removable discontinuity of first kind
2. irremovable finite discontinuity of first kind
4. x = – 2 is a discontinuity of the first kind (the jump

being equal to 2)

5. No, it has a discontinuity of second kind.
6. Infinite discontinuity of second kind.
7. No
8. (i) g(x) = x – 4,

(ii) irremovable discontinuity

PRACTICE PROBLEMS—C
9. (i) x = 0 is a point of removable discontinuity,

(ii) x = 0 is a point of discontinuity of the second kind
(iii) x = k (k  I) are points of discontinuity of the

first kind,
(iv) at the points x = 1 and x = –1 the function is

continuous and the other points are points
of discontinuity of the second kind,

(v) x = –1 is a point of discontinuity of the second
kind,

(vi) x = 0 is a point of discontinuity of the first kind
(vii) x = 1 is a point of discontinuity of the first kind
(viii) x = –1 and x = 3 are points of discontinuity of

the second kind,
(ix) x = 1 is a point of removable discontinuity,
(x) x = –1 is a point of discontinuity of the first kind.

10. (i) missing point discontinuity,
(ii) isolated point discontinuity,
(iii) infinite discontinuity,
(iv) infinite discontinuity,
(v) infinite discontinuity,
(vi) infinite discontinuity,
(vii) of second kind discontinuity

11. No
13. Irremovable discontinuity
14. (i) x = – 2 is a discontinuity of second kind; x = 2

is a removable discontinuity.
(ii) x = –1 is a removable discontinuity; x = 1 is a

discontinuity of first kind.
(iii) x = 1 is a discontinuity of first kind.

15. (i) x = 1 is a discontinuity of first kind.
(ii) continuous.

CONCEPT PROBLEMS—D
2. (i) Yes, Hint. If the function (x) = f(x) + g(x) is

continuous at the point x = x0, then the
function g(x) = (x) – f(x) is also continuous
at this point;

(ii) No. Example: f(x) = – g(x) = sgn x; both
function are discontinuous at the point x = 0,
and their sum is identically equal to zero, and



2.78  DIFFERENTIAL CALCULUS

is, hence continuous.
3. (i) No. Example f(x) = x is continuous

everywhere, and g(x) = sin 
x
  for x  0,

g(0) = 0 being discontinuous at the point x =
0. The product of these function is a function
continuous at x = 0 since 

0x
lim
  x sin 

x
  = 0;

(ii) No. Example: f(x) = – g(x) = 







0xfor1–

0xfor1

both functions are discontinuous at the point
x = 0, their product f(x) g(x)  – 1 being
continuous everywhere.

6. No

7. No. Example: f(x) = 




irrationalisxif1–

rationalisxif1

8.








01
01

x,x

x,x
)x(f

PRACTICE PROBLEMS—D
11. x2 if x  0; 0 if x < 0; h is continuous everywhere.
12. gof(x) is discontinous at x = – 1, 0, 1
13. 1 if 1  |x|  3 ; 0 otherwise. h is continuous

everywhere except at x = ±1, ± 3 .
14. discontinuous at 1 and –1.
15. {0, 1}

16.

x 2, 0 x 1
g(x) 2 x, 1 x 2

4 x, 2 x 3

  
   
   

 and g(x) is

discontinuous at x = 1 and x = 2
17. continuous everywhere
18. h(x) is discontinuous at x = 0

CONCEPT PROBLEMS—E

1. (i) f(x) = 
1

1
x

 ; g(x) = x

(ii) f(x) = x ; g(x) = 2
1

x 1
(iii) f(x) = x2 ; g(x) = tan–1x

5. (i) (–4, –3), (–2, –1), (–1, 0), (0, 1),
(ii) (–3, –2.5), (–2.5, –2), (0, 0.5), (0.5, 1),

PRACTICE PROBLEMS—E
8. (a) yes (b) yes
14. (ii) f(x) = x2(sin2x + 2)

CONCEPT PROBLEMS—F
2. (i) c = 3 (ii) c = 2

(iii) c = 3
5. 1.53 10. Yes
14. f must be a constant function.

PRACTICE PROBLEMS—F
24. (– 4, – 3), (0, 1), (4, 5) 26. Yes
30. 0.6 approx. 34. False
37. 5
38. (i) [1, 2]  (ii) [0, 1]

(iii) 



 

2
,0 (iv) 



 
 0,

4
41. f(x) = 0

OBJECTIVE EXERCISE

1. B 2. D 3. C
4. C 5. D 6. B
7. C 8. B 9. D

10. A 11. B 12. B
13. C 14. A 15. D
16. B 17. B 18. C
19. A 20. C 21. A
22. C 23. C 24. A
25. B 26. A 27. D
28. C 29. A 30. C
31. B 32. A 33. A
34. B 35. C 36. C
37. B 38. C 39. C
40. C 41. B 42. C
43. D 44. D 45. B
46. D 47. D 48. B
49. B 50. C 51. D
52. C 53. C 54. A
55. A 56. A 57. D
58. C 59. C 60. C
61. D 62. A 63. C
64. C 65. C 66. D
67. A 68. C 69. B
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70. D 71. ABCD 72. AB
73. ABCD 74. AD 75. ABC
76. ABCD 77. ABCD 78. AB
79. BC 80. ABCD 81. ACD
82. ABC 83. ABCD 84. AC
85. ABCD 86. BCD 87. AB
88. CD 89. CD 90. BCD
91. A 92. D 93. C
94. B 95. C 96. D
97. C 98. C 99. C

100. D 101. D 102. B
103. B 104. B 105. D
106. A 107. B 108. C
109. C 110. C 111. B
112. C 113. D 114. A
115. A
116. (A)–(R); (B)–(PQ); (C)–(QS); (D)–(T)
117. (A)–(RS); (B)–(QR); (C)–(P); (D)–(P)
118. (A)–(R); (B)–(S); (C)–(Q); (D)–(P)
119. (A)–(S); (B)–(R); (C)–(P); (D)–(Q)
120. (A)–(Q); (B)–(R); (C)–(P); (D)–(PS)

REVIEW EXERCISES FOR JEE ADVANDED

1. discontinuous at x = –1, 0, 1, 2.
2. continuous in R
3. continuous.
4. discontinuous at x = 0, .
5. g is continuous on (1, 2].
6. discontinuous at all positive odd multiples of /2
7. 4
8. discontinuity of the second kind at x = 0.
9. (i) discontinuity of the first kind from left at x =

1, 2, 3, ....;
(ii) continuous for all x  0.

10. a > 64

11. a = e, b = 
1

- e
e

13. n = 1

14. a = 1–
1

e
, b = 0

17. Discontinuous at 0, 1
18. continuous in domain

19. Discontinuous at all positive rational number
except 1, continuous otherwise.

21. discontinuties lie one in each interval : (–2, –1),
(0, 1), (1, 2)

23. (fog) x is continuous everywhere and (gof) x is
discontinuous at x = 0, ± 1.

30. discontinuous at x = 0.
35. 1

TARGET EXERCISES FOR JEE ADVANCED

2. discontinuous
3. continuous everywhere.
4. discontinuous at x = 0, 1.
7. yn(x) is continuous at x = 0 for all n and y(x) is

discontinuous at x = 0
8. f(x)  =  0 when x = 0,

= x
2

1
  when 0 < x < 

2

1
,

= 
2

1
 when x = 

2

1
,

= x
2

3
  when 

2

1
 < x < 1,

= 1 when x = 1,
13. 4
14. f(x) > 0 for c < x  b,and f(x) < 0 for a  x < c.
17. f is continuous at every irrational in (0, ) and

discontinuous at every rational in (0, )
21. (iii) No (iv) yes
22. finite discontinuity at x = n + 1/2, n  I.
23. both are discontinuous; (x) is continuous if a = 1.
24. continuous everywhere.
27. f is discontinuous for all finite decimal

representations of x in which the last digit is 8
and none of the other digits is 7. For all other
values f is continuous.

28. Jump discontinuity.

30. k = 0; g(x) = 

n(tan x) if 0 x
4

0 if x
4 2

  
    


l

.

Hence g(x) is continuous everywhere.
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31. (i) 4 – 3 2  + a, (ii) a = 3

32. f(0+) = 
2


 ; f(0–) = 

4 2


   f is discontinuous

at x = 0 ; g(0+) = g(0–) = g(0) = /2   g is cont.
at x = 0.

33. discontinuity of the first kind at 1/r, r = 2, 3, ....;
discontinuity of the first kind from left at x = 1;
discontinuity of the first kind from right at x = 0.

34. n + 1/2, n I.

PREVIOUS YEAR'S QUESTIONS
(JEE ADVANED FOR ADVANCED)

1. k = 7
2. f(x) = 24 x , –2  x  0 = – 24 x , 0  x  2

3. (–, –1)  [0, ), I – {0} where I is the set of

integer except n = –1
4. 10 5. B
6. C 7. D
 8. CD 9. BCD
10. A
11. B, D

12. a = –
3

2
, b  R, c = 

1

2

13. g(x) = 

2 x, 0 x 1

2 x, 1 x 2

4 x. 2x x 3

  
   
   

discontinuity at x = 1, 2

14. a = 
6


, b = –

12



15. a = 8

16. a = 
2

3
, b = e2/3
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